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Finally, this manual is accompanied by a disk containing the following
files:

INSTALL.BAT - PC-CARES hard disk install batch file
PCCARES.INI PC-CARES initialization file
PCCARES.FOR PC-CARES FORTRAN source code
PCCARES.EXE PC-CARES DOS execution file
PCCARESB.EXE - PC-CARES DOS, 0S/2 bound execution file
PCCARES.DAT - PC-CARES sample problem input file
TEMPLET.INP - PC-CARES input templet file

As with all new software one receives, the original disks should be backed
up by making additional copies using the DOS or 0S/2 COPY command. If this
manual did not come with the above mentioned disk and/or you have a previous
version of PC-CARES (called CARES.EXE compiled with Microsoft Quick BASIC or
the Lahey FORTRAN compiler), it is recommended that you contact your source and
get a copy of the newer version for which this manual was written. The older

Further, neither wil] execute under 0S/2 protect mode, so it will be to your
advantage to upgrade.

You may run PC-CARES off a floppy disk or install it on your hard disk.
It is recommended that you put the PC-CARES code in its own separate directory
when you install it. For your convenience a batch file, INSTALL.BAT, has been
Included on the distribution disk which Is used as follows: At the DOS com-
mand prompt with the default drive set to the drive of the distribution disk
simply type INSTALL C: where C: is the drive designator of your hard disk.
The batch file will create the directory C:\PCCARES and place the contents of
the distribution disk in this directory. The batch file assumes that there is
no such file or directory called PCCARES in the root directory. For 0S/2
users, INSTALL.BAT must be executed from the DOS compatability box or simply

Using the dynamic array allocation routines of the compiler allows the
user to choose both the number of constant temperature fracture sets and the
maximum number of test specimens per temperature set at runtime by setting
these parameters in the keyword driven Initialization file called PCCARES.INI.
This initialization file also allows you to control the path and filenames of
both the PC-CARES input and output files. Note that the number of constant
temperature fracture sets (and the maximum number of fracture specimens per
set) is limited only by the amount of memory available to the program.

Under DOS the maximum program size fs 640 kB. Tnis 18mit mav he 1 mc.
however dua +A Athe. o o Iball 3]



PRINT spooler, or other such utilities. Remember if you want to check out the
amount of available memory under DOS, the CHKDSK command gives this information
along with the report on the disk medium. For more information on CHKDSK con-
sult your DOS reference manual. You may have to remove all the memory resident
programs from memory. If you execute memory resident programs from your
AUTOEXEC.BAT file, you may want to delete or comment out those commands before
you reboot to achieve as much free memory as you can. If you are using a LIMS
PC at NASA Lewis, it is recommended that you consult the LIMS manual or Compu-
ter Services before altering AUTOEXEC.BAT. If you should attempt to allocate
more memory than is available, the program will simply halt and display an
error message, so there is no harm in experimenting with the memory allocation.

Under 0S/2 versions 1.1 and 1.2 you are limited only by the virtual memory
capabilities of this operating system and the architecture of the 80286 chip
which permits processes (programs) up to 16 mB of virtual address space. (Note
that if you have a 80386 system with 0S/2 versions 1.1 or 1.2, you are still
limited to 16 mB as these versions operate the 386 chip in 286 mode.) In prac-
tice, you are limited only by the sum of the amount of physical RAM and the
amount of hard disk space available on your system. If you are running other
processes concurrently, this amount will be reduced accordingly.

The primary function of PC-CARES is statistical analysis of the data
obtained from the fracture of simple, uniaxial tensile or flexural specimens
and estimation of the Weibull and Batdorf material parameters from this data.

The weakest-link mechanism is expressed with the classical Weibull two-
parameter formulation, which, for volume flaw reliability, is
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where P¢ 1is the survival probability and o is the applied uniaxial tensile
stress. Here V is the volume of stressed material, and A is the area. The
subscripts V and S denote parameters that are a function of material volume
and surface area, respectively. The scale parameter oy has dimensions of

stress x (volume)' '™ or stress x (area)] MS. The scale parameter corresponds
to the stress level at which 63.2 percent of specimens with unit volume or area
would fracture. The shape parameter (or Weibull modulus), denoted by m, is a
dimensionless quantity and measures the degree of strength dispersion of the
flaw distribution.

In general, the parameters are obtained from the fracture stresses of many
specimens (30 or more are recommended) whose geometry and loading configura-
tions are held constant. Solutions for the three-point modulus-of-rupture
(MOR) bending bar, four-point MOR bending bar (ref. 4), and the pure tensile



specimen (ref. 5) maintained at a constant specified temperature have been
incorporated into the PC-CARES program. Since the material parameters are a
function of temperature, different constant-temperature data sets can be input
and the corresponding parameter estimates will be calculated. The amount of
specimens per each constant temperature data set and the total number of these
sets is only limited by the computer memory available to the program. In
addition, each specimen can be identified by its mode of failure, either
volume flaw, surface flaw, or some other mode so that parameter estimates for
competing failure modes can be obtained. The statistical accuracy of the
parameter estimates compared with the true material parameters depends on the
number of specimens tested, assuming that the true distribution is a Weibull
distribution.

Figure 2.1 shows the flowchart for the calculation of the statistical
strength parameters of the two-parameter Weibull distribution for volume-flaw
and surface-flaw-induced fracture, with complete (single mode) or censored
(multiple mode) samples, and the calculation of other statistical quantities.
Following the input of specimen geometry, fracture stresses, and respective
flaw origins, PC-CARES will first identify any potential bad data (outliers).
The outlier test developed by Stefansky (ref. 6) and subsequently used by Neal,
Vangel, and Todt (ref. 7) is incorporated into the program. Although the tech-
nique is based on the normal distribution and, therefore, its application to
the Weibull distribution is not rigorous, it serves as a guideline to the user.
Data detected as outliers are flagged with a warning message, and any further
action is left to the discretion of the user.

Weibull parameter estimates are obtained for the specimen surface and/or
volume as requested by the user, taking into account the fracture origin data
also supplied by the user. Biased estimates of the Weibull shape parameter
and characteristic strength are obtained from either least-squares analysis or
the maximum likelihood method for complete samples and/or censored samples.
PC-CARES uses the Weibull! log-likelihood equations given in Nelson (ref. 8)
and the rank increment adjustment method described by Johnson (ref. 9), for
complete and censored statistics.

Because the estimates of parameters are obtained from a finite amount of
data, they contain an inherent uncertainty that can be characterized by bounds
in which the true parameters are likely to lie. Methods have been developed
to evaluate confidence limits that quantify this range with a level of proba-
bility as a function of sample size. For the maximum likelihood method with
a complete sample, unbiasing factors for the shape parameter m, and 5 and
95 percentile confidence limits for m and the characteristic strength og,
are provided (ref. 10). The characteristic strength, or characteristic
modulus of rupture, is similar to the Weibull scale parameter except that it
includes the effect of the total specimen volume or area. For a censored
sample, an asymptotic approximation of the 90-percent confidence limits is
calculated. No unbiasing of parameters or estimation of confidence limits is
given when the least-squares option is requested.

The ability of the parameter estimates to reasonably fit the empirical
data is measured with the Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D)
goodness-of-fit tests. These tests are extensively discussed by D'Agostino and
Stephens (ref. 11). The tests quantify discrepancies between the experimental
data and the estimated Weibull distribution by a significance level associated



with the hypothesis that the data were generated from the proposed distribu-
tion. The A-D test is more sensitive than the K-S test to discrepancies at low
and high probabilities of failure. The Kanofsky-Srinivason 90-percent confi-
dence band values (ref. 12) about the Weibull line are given as an additional
test of the goodness-of-fit of the data to the Weibull distribution.

After the shape and characteristic strength parameters are estimated and
analyzed, PC-CARES calculates the other material parameters. The biased esti-
mate of the shape parameter m and the estimated characteristic strength og
are used along with the specimen geometry to calculate the Weibull_scale
parameter og. The Batdorf normalized crack density coefficient kg, which is
explained in the appendix section THEORY, is computed from the selected frac-
ture criterion, crack geometry, and the biased estimate of the shape parameter.
Figure 2.2 shows the fracture criteria and flaw geometries available to the
user which must be specified in order to calculate the Batdorf crack density
coefficient. If the user selects to calculate the Batdorf crack density coef-
ficient by setting it to the value that is the solution for the normal stress
fracture criterion, then the user need not specify the fracture criterion and
the crack geometry.

The simpie PIA fracture theory does not require a specific crack geometry,
and for uniaxial stress states, it reduces to equation (2.1) or (2.2), which-
ever is appropriate. The Weibull normal stress averaging method is also inde-
pendent of crack geometry, since it only considers impending mode I (opening
mode) crack growth, and neglects mode II (sliding mode) and mode III (tearing
mode) effects. Batdorf's fracture theory can be used with several different
mixed-mode fracture criteria and crack geometries. The combination of a par-
ticular flaw shape and fracture criterion results in an effective stress equa-
tion involving far-field principal stresses in terms of normal and shear
stresses acting on the crack plane. The coplanar crack extension criterion for
shear-sensitive materials available in PC-CARES is the total strain energy
release rate theory. Out-of-plane crack extension criteria are approximated by
a simple semi-empirical equation (refs 13 and 14). This equation involves a
parameter that can be varied to model the maximum tangential stress theory, the
minimum strain energy density criterion, the maximum strain energy release rate
theory, or experimental results . For comparison, Griffith's maximum tensile
stress analysis for volume flaws is also included. The highlighted boxes in
figure 2.2 show the recommended fracture criteria and flaw shapes.



MAIN PROGRAM

!

INPUT FRACTURE STRENGTH AND NFAILV - NUMBER OF FAILED
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FIGURE 2.1. - FLOWCIART TOR CALCULATION OF MATERIAL STATISTICAL STRENGTH PARAMETERS.
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FIGURE 2.2. - AVAILABLE FAILURE CRITERIA AND CRACK SHAPES.




3.0 PC-CARES INPUT INFORMATION

PC-CARES uses two files during its execution, the initialization file
(PCCARES.INI) and the input file (an example is included on the PC-CARES disk
called PCCARES.DAT). Using the initialization file with PC-CARES is optional.
For preparation of both the. initialization file and the PC-CARES input file, it
is assumed that the user has access to a DOS or 0S/2 full screen text editor
with block editing capabilities.

Input to PC-CARES for both the initialization file and the input file is
keyword driven. The keywords can be present in any order within each input
section, but they must start in the first column of the file. Examples of both
the initialization file and the input file are given in figures 3.1 to 3.7.
Note that underneath each keyword a location is given that specifies where the
data value or values are input. An explanation of each keyword is provided to
the right, and a 1ist of available choices is given, if applicable. If inte-
ger input is required, then the input field is between two asterisks (»), and
entries must be right justified. Real number input is read in an F10.4 format,
and asterisks are not present to define the field width. A maximum of 20 lines
between keywords is allowed before an error message is generated, and there-
fore, the user can insert short notes as desired.

3.1 PC-CARES Initialization File Description

Upon execution, PC-CARES first attempts to locate the file called
PCCARES.INI in the directory from which PC-CARES was executed. If the file is
not present a warning message is issued to the screen and the default para-
meters for filenames and array allocation sizes are used. Note that if you
intend to make use of the initialization file, it must be located in the same
directory as the PC-CARES execution file, otherwise the defaults are used.

The initialization file, PCCARES.INI, consists of two categories of input:
(1) File Control Input and (2) Dynamic Memory Control Input. The File Control
Input consists of two path/filenames (up to 20 characters) which PC-CARES uses
as the input and output filenames, so that the user can specify different
directory and/or filenames for the input and output files to/from the PC-CARES
program. The Dynamic Memory Control Input can contain two indices: one to
control the number of constant temperature data sets and the other to control
the maximum number of fracture stress data per constant temperature data set.
PC-CARES continues to read the initialization file until either it reads the
$ENDI keyword or end of file is encountered. Note that keywords that are not
found assume default values.

The user is advised to keep an unaltered copy of the PCCARES.INI file as
a backup. Details on specific input preparation are described in 3.2.1 File
Control Input and 3.2.2 Dynamic Memory Control Input sections of this manual.
Each keyword is discussed briefly in these sections, and the format field for
the input is denoted in parentheses next to the keyword as well as the default
values.



3.2 PC-CARES Initialization File Preparation

3.2.1 File Control Input

The File Control Input optionally controls which files PC-CARES uses for
tnput and output, overriding the default values. Each file/path name may be up
to 20 characters in length. For example see figure 3.1. In this example, if
PC-CARES was located in the C:\PCCARES directory the program accesses the input
file PPCARES.DAT in the C:\PCCARES\DATA directory and produces the output file
PCCARES.OUT in the C:\PCCARES\OQUTPUT directory. Please note that the output
directory must be created prior to program execution. The keywords pertaining
to the File Control Input section of the PC-CARES Initialization file are
defined as follows (the input format field is in parentheses):

INFILE (A20); Default : INFILE = 'CARES.DAT'

INFILE controls where PC-CARES reads its input.
OUTFILE (A20); Default : OUTFILE = 'CARES.QUT!

OUTFILE controls where PC-CARES sends its output.

3.2.2 Dynamic Memory Control Input

The Dynamic Memory Control Input optionally controls the maximum number of
constant temperature test sets and the maximum number of fracture stresses per
temperature set, and hence the amount of array space the program allocates.
This dynamic array allocation makes the compiled program smaller and gives the
user the flexibility to determine how much memory the program will use during
execution. Setting IMAXT = 20 and IMAXF = 200 is about the maximum allocation
for the PC-CARES running under DOS with its maximum 640K program size. Fig-
ure 3.1 shows an example of the Dynamic Memory Control Input section of the
PC-CARES Initialization file. The keywords IMAXF and IMAXT are defined as fol-
lows (the input format field is in parentheses):

IMAXF (2X,I5); Default : IMAXF = 150

IMAXF controls the maximum number of fracture stress data per constant
temperature set.

IMAXT (2X,15); Default : IMAXT = 10

IMAXT controls the maximum number of constant temperature fracture stress
sets.

3.3 PC-CARES Input File Description

For the PC-CARES input file, two categories of input are required for
execution: (1) Master Control Input and (2) Material Control Input (which
includes temperature-dependent material data). The Master Control Input is a
set of control indices which directs the overall program execution. It speci-
fies the number of brittle material statistical characterizations, the number



of Guassian quadrature points to be used to perform numerical integration, and
whether the fracture stresses should be reprinted in the output. The Material
Control Input consists of control indices and either the data required to esti-
mate the statistical material parameters or direct input of the Weibull statis-
tical parameter values themselves, for various temperatures to calculate the
Batdorf crack density coefficient only. This input category includes the
choices of fracture criteria and flaw shapes shown in figure 2.2. The choice
of fracture criteria and flaw shape is required to calculate the Batdorf crack
density coefficient since it is a function of these conditions as well as the
fracture stress data.

3.4 PC-CARES Input File Preparation

To control the execution of the PC-CARES program, the user must prepare an
input file consisting of the Master Control Input and the Material Control
Input. On the disk provided with the program is a file called TEMPLET.INP that
can be used to construct an input file for a particular problem. The Master
Control Input always comes at the beginning of a file.

After reading the initialization file (if one is present) PC-CARES contin-
ues execution by searching for the keywords associated with the Master Control
Input in the PC-CARES input file. The end of the Master Control Input occurs
when the $ENDX keyword is encountered. Following the Master Control Input,
PC-CARES searches for keywords specific to the Material Control Input. The
$ENDM and $ENDT keywords signal the end of two different sections of the Mate-
rial Control Input. Keywords not found between $END intervals may assume
default values. Because PC-CARES has a multiple material capability, each
section of input for a particular material is separated by a $ENDT card. The
TEMPLET.INP file has only two materials characterized. Modifying the file for
more materials involves block copying sections of the original file, appending
them to the end of the file, and modifying the copied input values accordingly.
The user is advised to keep an unaltered copy of the TEMPLET.INP file as a
backup. Details on specific input preparation are described in the Master Con-
trol Input and Material Control Input sections of this manual. Each keyword is
discussed briefly in these sections, and the format field for the input is
denoted in parentheses next to the keyword as well as the default value where
applicable.

3.4.1 Master Control Input

The Master Control Input section from the TEMPLET.INP file is reproduced
in figure 3.2. If parameter keywords in the input file are omitted, they
assume their default values.

NGP (4X,I12); Default : NGP = 15

NGP controls the number of Gaussian integration points that are used in
the reliability calculations. An entry of 30 will give better accuracy but at
the penalty of larger CPU requirements than an entry of 15. There are also
other options for NGP in PC-CARES, but users should not specify less than
15 Gaussian points.
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NMATS ,NMATV (4X,12); Defaults : NMATS = NMATV = 0O

The keyword NMATS represents the number of materials for which surface
flaw analysis is performed. NMATV represents the number of materials for which
volume flaw analysis is performed. A component consisting of one material may
have one set of statistical material parameters to characterize the surface and
another set for the volume, for which NMATS = 1 and NMATV = 1. Statistical
material parameters are a function of processing, microstructure, and environ-
ment. The PC-CARES program is capable of analyzing a single material with
multiple statistical material characterizations or many materials with multiple
statistical material characterizations. For example, if a single material has
two different surface finishes, then NMATS = 2 is used because two different
sets of statistical material parameters are required.

TITLE (72A1)

The input associated with the TITLE keyword is reproduced in the program
output for problem identification.

$ENDX
$ENDX signifies the end of the MASTER CONTROL INPUT.

3.4.2 Material Control Input

A sample of the Material Control Input section from the TEMPLET.INP file
is reproduced in figures 3.3 and 3.4. The figures are an example of the input
required for PC-CARES to estimate the volume flaw statistical material parame-
ters from experimental fracture data. In figures 3.5 and 3.6 an example of
the input needed to estimate the surface flaw statistical material parameters
from experimental fracture data is shown. Note that the Material Control
Input actually consists of two different data partitions. Figures 3.3 and
3.4, for example, make up a single section of the Material Control Input. In
figure 3.3, the control indices, material constants, and geometric variables
necessary to calculate volume flaw statistical parameters are shown. In fig-
ure 3.4, the temperature-dependent fracture data are given. The temperature-
dependent fracture data (MOR), or temperature-dependent values of the Weibull
shape and scale parameters (PARAM), are always placed immediately following the
control indices for that material.

The total number of Material Control Input sections is equal to the sum
of NMATS + NMATV from the Master Control Input. Note that keywords that are
not found assume default values.
3.4.2.1 Material and Specimen Dependent Data

The following keywords are the control indices, material indices, and geo-

metric variables necessary for calculation of volume and surface flaw statisti-
cal parameters as shown in figures 3.3 and 3.5.
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C (F10.4): Default : NONE

If ID2S = 5 or ID2V = 5 (i.e., if Shetty's mixed-mode fracture criterion
is selected), then the value of the empirical constant C, denoted by the key-
word C, must be specified. If this criterion is not selected, this input is
ignored and can be deleted.

DL1, DL2, DH, DW (F10.4); Default : NONE

If ID] =2 or § (i.e., if statistical material parameters are to be deter-
mined from four-point MOR fracture specimens), then the specimen dimensions
must be input. OL1 represents the length between the two outer symmetrical
loads. DL2 is the length between the two inner central loads. DH is the total
height of the test specimen cross section. DW is the total width of the test
specimen cross section. By setting DL2 equal to zero, data obtained from
three-point bend tests can also be used to obtain appropriate Weibull
parameters.

ID1 (4X,I1); Default : NONE

ID! is a control index for specifying the form of the data to be input
for obtaining the statistical material parameters. Either the Weibull shape
and scale parameters are directly specified or experimental fracture data are
input. The fracture data can be either from four-point modulus-of-rupture
bend bars or from tensile test specimens. If the fracture data are assumed to
be all from one failure mode (all volume flaws or all surface flaws), then
ID1 = | or 2 can be chosen. If ID1 =1 or 2, then fracture origins are not to
be input with the specimen fracture stresses, and PC-CARES assumes that the
fracture origins are consistent with the ID4 input index. If IDI = 4 or 5,
then fracture origins must be supplied with the fracture data.

ID2S,1D2v (4X,I11); Default : NONE

These control indices are for selection of a fracture criterion. 1ID2S fis
for a surface flaw fracture criterion (see fig. 3.5 . [ID2V is for a volume
flaw fracture criterion (see fig. 3.3). If ID4 = 1, then ID2V should be speci-
fied. If ID4 = 2, then ID2S should be specified. If both ID2S and ID2V are
specified in the same input section, the entry not consistent with the ID4
index is ignored. Shetty's mixed-mode fracture criterion is recommended for
both surface and volume flaw analysis.

ID3S,ID3V (4X,I1); Default : NONE

The ID3S and ID3V control indices are for selection of a crack geometry.
ID3S is for surface flaw geometry (see fig. 3.5). 1ID3V is for volume flaw
geometry (see fig. 3.3). If ID4 = 1, then ID3V should be specified. If
ID4 = 2, then ID3S should be specified. If both ID3S and ID3V are specified in
the same input section, the entry not consistent with the ID4 index is ignored.
The penny-shaped crack is recommended for volume flaw analysis and the semicir-
cular crack is recommended for surface flaw analysis.

12



ID4 (4X,I1); Default : NONE

ID4 controls the calculation of volume- or surface-based statistical mate-
rial parameters. From the fracture data supplied, the Weibull shape and scale
parameters along with the normalized Batdorf crack density coefficient are
estimated. If the Weibull shape and scale parameters are directly input, then
the normalized Batdorf crack density coefficient is calculated.

IKBAT (4X,I1); Default : IKBAT = 0O

IKBAT selects the method of calculating the normalized Batdorf crack
density coefficient. If IKBAT = 0, then the crack density coefficient is set
to the value that is the solution for the normal stress fracture criterion,
regardless of the fracture criterion and crack geometry selected by the user,
and therefore the ID2S and ID3S (or ID2V and ID3V) indices do not have to be
specified for surface or volume flaw analysis, respectively. If IKBAT = 1,
then the crack density coefficient is calculated based on the fracture cri-
terion and crack geometry selected by ID2S and ID3S or by ID2V and ID3V.
IKBAT = 0 gives more conservative reliability predictions and usually agrees
more closely with test data than IKBAT = 1 does; it is therefore recommended
as the best choice unless specific data exist that indicate otherwise.

MATID (1X,I7)

MATID is the material identification number that is associated with the
statistical material parameter data.

MLORLE (4X,I1); Default : MLORLE = 0

MLORLE is the control index for the method of estimation of the Weibull
shape parameter m and characteristic strength og from experimental fracture
data. MLORLE is ignored if the Weibull shape and scale parameters are directly
input.

PR (F10.4); Default : PR = 0.25
PR is Poisson's ratio. It is assumed to be temperature independent.
TITLE (72A1)

The input associated with the TITLE keyword is reproduced in the program
output for material identification.

VAGAGE (F10.4); Default : NONE

VAGAGE is the gage volume or area of a tensile test specimen. If ID4 = 2
and ID1 = 1 or 4 (i.e., if surface flaw analysis is specified and the statis-
tical material parameters are to be determined from simple tension tests),
then the gage surface area of the specimen must be specified. If ID4 = 1 and
IDY = 1 or 4 (i.e., if volume flaw analysis is specified and the statistical
material parameters are to be determined from simple tension tests), then the
gage volume of the specimen must be specified.



$ENDM

$ENDM signifies the end of a section of the Material Control Input. The
temperature-dependent specimen fracture data or the Weibull shape and scale
parameters are assumed to immediately follow.

3.4.2.2 Temperature-Dependent Fracture or Statistical Material Paramete-s Data

Immediately following the $ENDM keyword, which signals the end of the
material and specimen dependent data, the temperature-dependent experimental
fracture data or Weibull shape and scale parameters are input. Data for up to
IMAXT different temperatures can be specified, where IMAXT is the maximum num-
ber of constant temperature data sets as described in section 3.2.2 Dynamic
Memory Control Input, of this manual. Figures 3.4 and 3.6 show examples of the
input for experimental fracture stress data. Figure 3.7 shows an example of
the input for the Weibull shape and scale parameters.

MOR (3A1,3E18.10) or (3E18.10)

MOR indicates that experimental fracture stresses will be input. Frac-
ture stresses can be input in any order, with a maximum of IMAXF specimen fail-
ure stresses input for each temperature. There are two styles of input. If
IDI =1 or 2 (i.e., if the fracture data are assumed to be a complete sample),
then fracture stresses only are input and the input format is 3E18.10 as shown
in figure 3.6. Referring to figure 3.4, if IDI = 4 or 5 (i.e., if the frac-
ture origins and the fracture stresses are to be input), then the input format
is 3A1, 3E18.10. The 3Al represents three fields of single alphanumeric char-
acters. This field is for fracture origin input. An "S" indicates a surface
flaw origin. A "V" represents a volume flaw origin. A "U" indicates an
unknown flaw origin. Each fracture stress has a corresponding fracture origin.
In figure 3.4, each line of fracture data consists of three fracture origins
followed by their respective fallure stresses. Fracture data values should be
unique, and multiple identical values should not be input (change the values
slightly).

NUT (3X,I3)

NUT is the sample size of the experimental fracture data for the tempera-
ture indicated by TDEG. NUT is specified if ID1 does not equal 3 (statistical
material parameters are not being directly input). Different numbers of speci-
mens are permitted at different temperatures.

PARAM (2E18.10)

PARAM signals that the Weibull shape and scale parameter will be input for
the temperature indicated by TDEG. Referring to figure 3.7, the Weibull shape
and then the Weibull scale parameters are entered at the indicated space with a
format of 2E18.10. The Welbull shape parameter is dimensionless. The Weibull
scale parameter has units of stress x (volume) M for volume flaw analysis
and units of stress x (area)] MS  for surface flaw analysis. Note that ID1 = 3
must be specified.
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TDEG (F10.4)
TDEG is the input keyword for the temperature of the fracture data or of
the statistical material parameters that immediately foilow. Temperature can

be specified in any units desired and is used for identification purposes only
in the PC-CARES code.

$ENDT
$ENDT signals the end of the temperature-dependent data.

Another section of the MATERIAL CONTROL INPUT follows, if required.



-~~~ PC-CARES INITIALIZATION FILE ---

ook ok ok R ok R R R ok ks koK b o sk ook ok ook b ok ok ok doROk ROk ok ok ok ok ook ok ok ok ok ok Ok koo KOk R koK ok Aok ok
Sk dokok ok ok otk ok kR o ok sk ok ok ok ok sk ok o ke s ok ok skok Rk ook ok ok ok ok ok ok ok kokok ok Kok ok sk ok ok sk kKo ROk Kok ok ok ok ok ok

FILE CONTROL INPUT

INFILE : PATH AND FILE NAME FOR CARES MASTER CONTROL INPUT FILE (LUA)
————————— (LENGTH OF PATH/FILE NAME MUST BE < 20 CHARACTERS)

DATA\PCCARES .DAT
————————— (DEFAULT: ’PCCARES.DAT’)

OUTFILE : PATH AND FILE NAME FOR CARES GENERAL OUTPUT FILE (LUB)
————————— (LENGTH OF PATH/FILE NAME MUST BE < 20 CHARACTERS)

DATA\PCCARES . OUT
————————— (DEFAULT: 'PCCARES.OUT’)

IMAXF . MAXIMUM NUMBER OF FRACTURE STRESSES THAT CAN BE INPUT PER RUN
--------- (IMAXF > 0. NOTE - THIS PARAMETER CONTROLS THE AMOUNT OF
+00150+ ARRAY SPACE DYNAMICALLY ALLOCATED AT RUN-TIME.)

--------- (DEFAULT: 150) .

IMAXT . MAXIMUM NUMBER OF TEMPERATURE SETS THAT CAN BE INPUT PER RUN

--------- (IMAXT > 0. NOTE - THIS PARAMETER CONTROLS THE AMOUNT OF
+00010+ ARRAY SPACE DYNAMICALLY ALLOCATED AT RUN-TIME.)

_________ (DEFAULT: 10)

sk o o ok ok ok o ok kK ok K Ok ok sk ok s sk s sk ok ok ok ok ok ok ok ok ok sk ok ok sk ke ook sk ok 3ok ok okl ko ko ok ok ok kokok Kok ok ok

SENDI : END OF INITIALIZATION FILE

st o ok e e sk o ok o ok ok ok o ok ok ok ok ok ok ok o ook e ok sk b kok OkoOK OROK ko koK ek ok kool kol ok okokok ok ke kb sk koo ok ok ko

FIGURE 3.1. - PC-CARTS TNTTIALEZATION FOLE,
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-—- PC-CARES TEMPLET INPUT FILE ---

*t*****t*******************f*t**#t******t****i***#t****i*t**t*tt***t****
t*i*****#**********************#*******t***************t***t*****t******

MASTER CONTROL INPUT
TITLE : PROBLEM TITLE (ECHOED IN PC-CARES OUTPUT)

NMATS : NO. OF MATERIALS FOR SURFACE FLAW ANALYSIS
---------- (NMATS+NMATV < 101)

s01+ (DEFAULT: NMATS = 0)
NMATV : NO. OF MATERIALS FOR VOLUME FLAW ANALYSIS
---------- (NMATS+NMATYV < 101) .

+01# (DEFAULT: NMATYV = 0)
IPRINT : CONTROL INDEX FOR STRESS OUTPUT
--------- (DEFAULT: IPRINT = 0)

1+ 0 : DO NOT PRINT FRACTURE DATA

————————— 1 : PRINT FRACTURE DATA

NGP : NO. OF GAUSSIAN QUADRATURE POINTS (15 OR 30)
---------- (DEFAULT: NGP = 15) :

iy e A
SENDX : END OF MASTER CONTROL INPUT

*******ﬁ*****#*****************************t**t**t*********tt***i***t***

FIGURE 3.2. - PC-CARES MASTER CONTROL INPUT.



MATERIAL CONTROL INPUT
TITLE : MATERIAL TITLE (ECHOED IN PC-CARES OUTPUT)

MATID . MATERIAL IDENTIFICATION NUMBER
————————— (NO DEFAULT)
+*0000300+
ID1 . CONTROL INDEX FOR EXPERIMENTAL DATA
————————— (NO DEFAULT)
*5% 1 : UNIFORM UNIJAXIAL TENSILE SPECIMEN TEST DATA
————————— 2 : FOUR-POINT BEND TEST DATA
3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SHAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA
ID4 . CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS
————————— (NO DEFAULT)
*1x 1 : VOLUME
————————— 2 : SURFACE
ID2y . CONTROL INDEX FOR VOLUME FRACTURE CRITERION
————————— (NO DEFAULT)
5 1 : NORMAL STRESS FRACTURE CRITERION
————————— (SHEAR-INSENSITIVE CRACK)
2 . MAXIMUM TENSILE STRESS CRITERION
3 . COPLANAR STRAIN ENERGY RELEASE RATE CRITERIGON
(G SUB T)
4 ; WEIBULL PIA MODEL
5 : SHETTY'S SEMI-EMPIRICAL CRITERION
ID3Y . CONTROL INDEX FOR SHAPE OF VOLUME CRACKS
--------- (NO DEFAULT)
«2% 1 : GRIFFITH CRACK
————————— 2 : PENNY-SHAPED CRACK
IKBAT . CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK
————————— DENSITY COEFFICIENT (K SUB B) FROM TEST DATA
*O* (DEFAULT: IKBAT = 0)
————————— 0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)
1 : SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TO OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE
SELECTED BY THE ID2 AND ID3 INDICES)
PR + POISSON’S RATIO
—————————— (DEFAULT: PR = 0.25)
00000.2500
C . CONSTANT FOR SHETTY’S SEMI-EMPIRICAL MIXED-MODE FRACTURE

---------- CRITERION (KI/KIC)+(KIL/(C+KIC))#»2 =1
00000.8000  OBSERVED VALUES RANGE FROM 0.8 TO 2. (REF. D.K. SHETTY)
---------- NOTE: AS C APPROACHES INFINITY, PREDICTED FAILURE

FIGURE 3.3. - PC-CARES MATERIAL CONTROL INPUT FOR VOLUME FLAW ANALYSIS.
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MLORLE

DH

00000.0710

PROBABILITIES APPROACH NORMAL STRESS CRITERION VALUES
(DEFAULT C = 1.0)

: CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL

PARAMETERS FROM THE EXPERTMENTAL FRACTURE DATA
(DEFAULT: MLORLE = 0)

0 : MAXIMUM LIKELINOOD

1 : LEAST-SQUARES LINEAR REGRESSTON

: HELIGHT OF THE FOUR--POINT BEND BAR

(NO DEFAULT)

: OUTER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

: INNER LOAD SPAN OF THE FUUR-POINT BEND BAR

(NO DEFAULT)

: WIDTH OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

ok ok ke ok ok ok ok okok Kook ok ok sk ook ook ok ook sk sk ok ko sk ko ok ok ok sk ok ok o o ok ok ok ok ok ok o ok ok K ok o ok ok

$SENDM

: END OF TEMPERATURE INDEPENDENT MATERIAL CONTROL INPUT

AR R A R A R s S s R A eI I mmm

FIGURE 3.3. - CONCLUDED.
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL

R R R RN RN RN R R R R R R R R R N N N N NN N

PLEASE NOTE THE FOLLOWING:
1. FRACTURE STRESSES FOR A GIVEN TEMPERATURE CAN BE INPUT IN
ARBITRARY ORDER.
2. THE DEFAULT MAXTMUM NUMBER OF TEMPERATURE SETS IS 10.
3. THE DEFAULT MAXTMUM NUMBER OF FRACTURE SPECIMENS PER TEMPERATURE IS
150.
4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN

OF THE MOR BAR.
RN RN R R N N R R R R R N R R A R R R RN
TDEG TEMPERATURE OF THIS SET
00070.0000
NUT : NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE
*(015%
MOR : S-URFACE, V-OLUME, OR U-NKNOWN FLAW AND RESPECTIVE STRESS
e R et A *
yvv 0.457500E+05 0.461000E+05 0.481000E+05
Yvv 0.481250E+05 0.491250E+05 0.491880E+05
yvv 0.495000E+05 0.496250E+05 0.496500E+05
Ysy 0.497500E+05 0.498500E+05 0.498900E+05
SSU 0.506250E+05 0.516250E+05 0.522500E+05
———— = e e mmm — M - *
END OF DATA FOR THE ABOVE TEMPERATURE
TDEG : TEMPERATURE OF THIS SET
00500.0000
NUT : NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE
*Q15#
MOR : S-URFACE, V-OLUME, DR U- NKNOWN FLAW AND RESPECTIVE STRESS
B ettt e -
Vvy 0.407500E+05 0.411000E+05 0.431000E+05
Vvy 0.431250E+05 0.441250E+05 0.441880E+05
Yvy 0.445000E+05 0.446250E+05 0.446500E+05
Yvv 0.447500E+05 0.448500E+05 0.448900E+05
yvv 0.456250E+05 0.466250E+05 0.472500E+05
ek e K e R ettt *
END OF DATA FOR THE ABOVE TEMPERATURE
TDEG : TEMPERATURE OF THIS SET
01000.0000

FIGURE 3.4, - fEMPERATURE—DEPENDENI FRACTURE DATA FOR VOLUME FLAW ANALYSIS (CENSORED DATA OPTION).
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NUT : NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

*015+
MOR : S-URFACE, V-OLUME, OR U-NKNOWN FLAW AND RESPECTIVE STRESS
B Tl fm e e *
uvy 0.357500E+05 0.361000E+05 0.381000E+05
vy 0.381250E+05 0.391250E+05 0.301880E+05
Yvv 0.395000E+0% 0.396250E+05 0.396500E+05
YVs 0.3975005+0% 0.398500E+05 0.398900E+05
VSS 0.406250E+05 0.416250E+05 0.422500E+05

o koK kK K R Ok kK Rk kR ok R Ok R kK ok K ok ok kKR ROk ok ok ok K oK kR kK R KOk Rk Rk

$ENDT

ok o ok ok ok ok ok KOk ok Ok ok ok ok ok kol ok ok ok ok ok o ok ok ok ok kot sk ok ok ok o kok i okok Aok ok ok koak ok ko okok ok koo ok Rk

END OF DATA FOR THE ABOVE TEMPERATURE

: END OF DATA FOR THE ABOVE MATERIAL

FIGURE 3.4, - CONCLUDED.
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MATERIAL CONTROL INPUT
TITLE : MATERIAL TITLE (ECHOED IN PC-CARES OUTPUT)

MATID . MATERIAL IDENTIFICATION NUMBER
--------- (NO DEFAULT)
+0000300+
D1 : CONTROL INDEX FOR EXPERIMENTAL DATA
--------- (NO DEFAULT)
*24 UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
--------- 2 : FOUR-POINT BEND TEST DATA
3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SEAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA
D4 : CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS
--------- (NO DEFAULT)
2 1 : VOLUME
--------- 2 . SURFACE
1028 . CONTROL INDEX FOR SURFACE FRACTURE CRITERION
--------- (NO DEFAULT)
5% NORMAL STRESS FRACTURE CRITERION
--------- (SHEAR-INSENSITIVE CRACK)
3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
(G SUB T)
4 : WEIBULL PIA MODEL
5 : SHETTY'S SEMI-EMPIRICAL CRITERION
D38 . CONTROL INDEX FOR SHAPE OF SURFACE CRACKS
--------- (NO DEFAULT)
wdn 1 : GRIFFITH CRACK
e (ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)
(ASSOCIATED WITH SHETTY'S SEMI-EMPIRICAL CRITERION)
3 : GRIFFITH NOTCH
(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)
(ASSOCIATED WITH SHETTY'S SEMI-EMPIRICAL CRITERION)
4 : SEMICIRCULAR CRACK
(ASSOCIATED WITH SHETTY'S SEMI-EMPIRICAL CRITERION)
TKBAT . CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK
--------- DENSITY COEFFICIENT (K SUB B) FROM TEST DATA
+0% (DEFAULT IKBAT =
--------- SHEAR- INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)
1 . SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TO OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE
SELECTED BY THE ID2 AND ID3 INDICES)
PR : POISSON’S RATIO
---------- (DEFAULT: PR = 0.25)
00000. 2500

FIGURE 3.5. - PC-CARES MATERIAL CONTROL INPUT FOR SURFACE FLAW ANALYSIS.
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¢ : CONSTANT FOR SHETTY’S SEMI-EMPIRICAL MIXED-MODE FRACTURE

---------- CRITERION (KI/KIC)+(KII/(C+KIC))++2 = 1

00000.8000  OBSERVED VALUES RANGE FROM 0.8 T0 2. (REF. D.K. SHETTY)

---------- NOTE: AS C APPROACHES INFINITY, PREDICTED FAILURE
PROBABTLITIES APPROACH NORMAL STRESS CRITERION VALUES
(DEFAULT: C = 1.0)

MLORLE, : CONTROL TNDEX FOR METHOD OF CALCULATING WEIBULL
————————— PARAMETERS FROM THE EXPERIMENTAL FRACTURE DATA
*1* (DEFAULT: MLORLE = 0)

————— - 0 : MAYIMUM LIKELINHGOD
1 : LEAST-SQUARES LINEAR REGRESSION

DH : HEIGHT OF THE FOUR-PUINT BEND BAR
---------- (NO DEFAULT)

00000.0710

DL1 : OUTER LOAD SPAN OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)

00001 . 0000

DL2 : INNER LOAD SPAN OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)

00000 .. 5000

W : WIDTH OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)

00000. 1477

Aok ook Ik Ak SRR skt ko ok sk kb K K Ok ok b ok ok kR ok ok ok o o ob ok ok ok ok
SENDM : END OF TEMPERATURE INDEPENDENT MATERIAL CONTROL INPUT

*******#************#*********t*****#***************t**i***t******i*#t**

FIGURE 3.5. - CONCLUDED.
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL

PLEASE NOTE THE FOLLOWING:
1. FRACTURE STRESSES FOR A GIVEN TEMPERATURE CAN BE INPUT IN
ARBITRARY ORDER.
2. THE DEFAULT MAXIMUM NUMBER OF TEMPERATURE SETS IS 10.
3. THE DEFAULT MAXTi{UM NUMBER OF FRACTURE SPECIMENS PER TEMPERATURE IS
150.
4. RECARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN

OF THE MOR BAR.
SRR RN RN IR R R R R R RN RN RN R R RN R RN RN RN R AR A AR AR AR RS

TDEG TEMPERATURE OF THIS SET

00070. 0000

NUT NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE
+015%

¥OR FRACTURE STRESSES

0.457500E+05 0.461000E+05 0.481000E+05
0.481250E+05 0.491250E+05 0.491880E+05
0.495000E+05 0.496250E+05 0.496500E+05
0.497500E+05 0.498500E+05 0.498900E+05
0.506250E+05 0.516250E+05 0.522500E+05

o mmm e —— K e M m e m e

END OF DATA FOR THE ABOVE TEMPERATURE

TDEG : TEMPERATURE OF THIS SET

00500.0000

NUT . NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

«*(Q15%

MOR FRACTURE STRESSES

e e e o mm e M *
0.407500E+05 0.411000E+05 0.431000E+05
0.431250E+05 0.441250E+05 0.441880E+05
0.445000E+05 0.446250E+05 0.446500E+05
0.447500E+05 0.448500E+05 0.448900E+05
0.456250E+05 0.466250E+05 0.472500E+05

Kmm e — K m e ——— e —— K —m e —————

END OF DATA FOR THE ABOVE TEMPERATURE
TDEG : TEMPERATURE OF THIS SET
01000.0000

FIGURE 3.6. - TEMPERATURE-DEPENDENT FRACTURE DATA FOR SURFACE FLAW ANALYSIS (COMPLETE SAMPLE OPTION).
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NUT : NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE

+015%

MOR : FRAGCTURE STRESSES

o L L e *
0.357500E+05 0.361000E+05 0.381000E+05
0.381250E+05 0.391250E+05 0.391880E+05
0.385000E+05 0.396250E+05 0.396500E+05
0.397500E+05 0.398500E+05 0.398900E+05
0.406250E+05 0.416250E+05 0.422500E+05

Hor o m e m e e o *

END OF DATA FOR THE ABOVE TEMPERATURE

Aok ok ok ok ok ok ok ok ko Kok sk kR Rk ok kR ok ok sk ok ok sk ook e sk ok koo ok ok ook ok ok ok ok ok ok ok ok ok ok ok Kk b ok ok b kK

SENDT : END OF DATA FOR THE ABOVE MATERIAL

ok ok ok ok ok ok ko sk ok ook ok o ook ok K Ok ROROR iR Ok KR Kook ok ok ok kK oK R ok ke ook ook ok ok sk ok ok ok ok 3k ok ok ok b ok sk ok o

FIGURE 3.6. - CONCLUDELD.
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL

PARAM : WEIBULlL, MODULUS (SHAPE PARAMETER) AND SCALE PARAMETER

+-WEIBULL MODULUS-+-SCALE PARAMETER-+*

0.765000E+01 0.878910E+06
%

END OF DATA FOR THE ABOVE TEMPERATURE

**t*i**#*****#***t***********#**t****#****t***#t**t***************t*****

$ENDT : END OF DATA FOR THE ABOVE MATERIAL

*#*#*****#****#*****************t*i*******#****t*****************#******

FIGURE 3.7. - DIRECT INPUT OF TEMPFRATURE-DEPENDENT STATISTICAL MATERIAL PARAMETERS.

26



4.0 EXECUTION OF THE PC-CARES PROGRAM

Prior to the execution of the PC-CARES program the user must prepare the
initialization file (optional) and the PC-CARES input file as per the instruc-
tions of section 3.0 PC-CARES INPUT INFORMATION. Further, if one intends to
use a special directory other than the default directory for the PC-CARES
output file, then that directory must be created prior to execution of the
program.

As can be noted from the distribution disk list in section 1.0 INTRODUC-
TION, there are two executable files included, PCCARES.EXE and PCCARESB.EXE.
The former execution file is the PC-CARES code linked for DOS mode (or the
0S/2 DOS compatability box) execution only. The latter code is the PC-CARES
bound execution file, which means that this file will run in either DOS (real)
mode or 0S/2 (protected) mode. The reason for including the real mode
execution file when the bound execution file will run in either mode is that
the real mode execution file is smaller and will allow the user to have more
array space for fracture test data which may make a significant difference
given the DOS 640K memory limitation. For users running DOS only, it is recom-
mended that you use the PCCARES.EXE execution file.

If you do have 0S/2 version 1.1 or higher you can take advantage of the
larger address space of protect mode and multiasking by executing PCCARESB.EXE
from the 0S/2 command prompt.

Execution of PC-CARES is straight forward. After setting up the necessary
input files and setting the default directory to the location of the execution
files, simply type PCCARES (or PCCARESB) at the DOS (or 0S/2) command prompt.
Immediately the message 'EXECUTING PC-CARES...' should appear on the screen.
Except for any warning or error messages the program will run to completion
without any user interaction. When the program finishes the message

PC-CARES EXECUTION COMPLETE
Stop - Program Terminated

will appear on the screen followed by the command prompt. You then may view
the output of the program by printing the file, using the TYPE command, or
simply using your screen editor to view it.

The program will generate two types of error messages: (1) Program Con-
trol Errors and (2) Data Control Errors. The former will always appear on the
screen and immediately halt the program. These errors are generated by the
inability of the program to either open the necessary files or allocate the
array space dynamically; these are essentially errors associated with the ini-
tialization file. 1In the latter case the program will appear to terminate
normally but upon viewing the output file an error message will be found. The
Data Control Errors result from missing or inconsistent input from either the
Master Control Input or the Material Control Input of the PC-CARES input file.
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5.0 PC-CARES OQUTPUT INFORMATION

The first part of the PC-CARES output is an echo of the choices selected
(or default values) from the Master Control Input. The PRINTA subroutine
echoes these data.

Then PC-CARES proceeds to the PRINTB subroutine to echo the user inputs
for each section of the Material Control Input. The results of the analysis of
the data from the Material Control Input are output in the PRINTP subroutine.
[f statistical material parameters are directly input, then output pertaining
to calculated values of the normalized Batdorf crack density coefficient will
follow. If statistical material parameters are determined from experimental
fracture data, then the output will identify the method of solution, the con-
trol index used for experimental data, the number of specimens in each batch,
and the temperature of each test. In addition, the output echoes the input
values of all specimen fracture stresses with proper failure mode identifica-
tion if the user has set IPRINT = 1 in the Master Control Input. Any data
value that deviates greatly from the rest of the sample is detected as an out-
lier, and its corresponding significance level is printed. Three levels of
significance are available for outliers: 1, 5, or 10 percent. The lower the
significance level, the more extreme is the deviation of the data point from
the rest of the distribution. A l-percent significance level indicates that
there is a 1-in-100 chance that the data point is actually a member of the same
population as the other data, assuming a normal distribution.

Next, the biased and the unbiased value of the shape parameter, the spec-
imen characteristic strength, the upper and lTower bound values at 90-percent
confidence level for both the shape parameter and the specimen characteristic
strength, the specimen Weibull mean value, and the corresponding standard devi-
ation are printed for each specified temperature. For censored statistics,
these values are generated first for the volume flaw analysis and subsequently
for the surface flaw analysis. Not all of this information is available for
all methods of material parameter estimation, and section 2.0 PROGRAM CAPABIL-
ITY AND DESCRIPTION of this manual should be consulted for further information.

The Kolmogorov-Smirnov (K-S) goodness-of-fit test is done for each data
point, and the corresponding K-S statistics (D+ and D-) and significance
level are listed. Similarly, the K-S statistic D for the overall population
is printed along with the significance level. This overall statistic is the
absolute maximum of individual specimen data D+ and 0O- factors. For the
Anderson-Darling (A-D) goodness-of-fit test, the A-D statistic A2 is deter-
mined for the overall population and its associated significance level is
printed. The lower the significance level, the worse is the fit of the exper-
imental data to be proposed distribution. For these tests, a l-percent leve!
of significance indicates that there is a 1-in-100 chance that the specimen
fracture data is from the estimated distribution.

The next table generated by PC-CARES from the PRINTP subroutine contains
data to construct Kanofsky-Srinivasan 90-percent confidence bands about the
Weibull distribution. The table includes fracture stress data, the correspond-
ing Weibull probability of failure values, the 90-percent upper and lower con-
fidence band values about the Weibull line, and the median rank value for each
data point. These statistical quantities are calculated with either tabular
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values or approximating polynomial functions. Experimental fracture data lying
outside these bands are an indication of poor fit to the Weibull distribution.

The last table from the PRINTP subroutine summarizes the material param-
eters listed as a function of temperature. These include the biased Weibull
modulus, the Batdorf crack density coefficient, and the material Weibull scale
parameter (unit volume or unit area characteristic strength). The values given
correspond to the experimental temperatures input. Information on the selected
fracture criterion and crack shape is printed for shear-sensitive fracture
models. Crack shape is not required for the shear-insensitive fracture cri-
terion or for the PIA model, and it need not be identified for those cases.

6.0 EXAMPLE PROBLEM

The following example and discussion of estimating the statistical mate-
rial parameters was, like the THEORY section in the appendix, obtained from the
original CARES manual. The CARES input file for this problem is included on
the distribution disk in the file called PCCARES.DAT to allow the user to run
the analysis in order to familiarize himself (herself) with PC-CARES operation.
Following the text below is a copy of both the input file, PCCARES.DAT and the
PC-CARES generated output.

Example - Statistical Material Parameter Estimation

To validate the methods used to estimate statistical material parameters,
we compared results from the fracture of four-point bend bars broken at NASA
Lewis and analyzed by CARES with results independently obtained by Bruckner-
Foit and Munz (ref. 15) for the International Energy Agency (IEA) Annex II,
Subtask 4 (ref. 16). The IEA Annex Il agreement is focused on cooperative
research and development among the United States, West Germany, and Sweden in
the areas of structural ceramics. Subtask 4 of the agreement addresses mechan-
ical property measurement methods with initial research concentrating solely on
four-point flexure testing. Three different materials were analyzed, namely a
hot isostatic pressed (HIPed) silicon carbide (SiC) from Elektroschmelzwerke
Kempten (ESK), West Germany, a HIPed silicon nitride (Si3Ng) from ASEA CERAMA,
Sweden; and a sintered silicon nitride from GTE WESGO, USA, although only
results from the ESK and ASEA materials are discussed herein.

In November 1986, 400 HIPed SiC flexure bars from West Germany were
distributed by Oak Ridge National Laboratory (ORNL) (Oakridge, Tennessee) to
the five participating U S. laboratories, including NASA Lewis. The bars were
fractured at these laboratories and the fracture stress data sets were
returned to ORNL as compliete data without censoring four different failure
modes. Shortly thereafter, 400 Si3Ng bars from Sweden were also received by
ORNL and subsequently distributed to the same U.S. laboratories for fracture
testing. Again, the fracture stress data sets were returned to ORNL as
complete sampies. The number of specimens of a particular material given to
each U.S. laboratory was 80. The specimens had cross-sectional dimensions of
3.5 mm (0.138 in.) in width and 4.5 mm (0.177 in.) in height. The specimens
were tested in four-point bending with an outer span of 40 mm (1.57 in.) and
an inner span of 20 mm (0.787 in.). The nominal loading rate was 0.5 mm/min
(0.020 in./min), and the testing temperature was approximately 20 °C (68 °F).
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Details of the statistical analyses of these data sets are given in refer-
ences 15 and 16. The results of the 80 silicon carbide flexure bars tested at
NASA Lewis, which are shown in table I, were analyzed with the CARES code to
calculate the maximum Tikelihood estimates (MLE's) of the Weibull parameters.
The Weibull parameter values from CARES, summarized in table II, match the pre-
dictions from reference 15 reasonably well. The SiC fracture data are plotted
in figure 6.1 along with the proposed Weibull 1ine and the Kanofsky-Srinivasan
90-percent confidence bands. Since all of the data are within the 90-percent
bands and the goodness-of-fit significance levels are high, it is concluded
that the fracture data show good Weibull behavior.

ASEA CERAMA HIPed Si3Ng bars (ref. 16) from Sweden were also fractured at
NASA Lewis, and subsequently, the statistical material parameters were estima-
ted with CARES by using the maximum likelihood method. A comparison of the
SigNg results with those in reference 15 is also shown in table II. Agreement
between estimates from the two sources is excellent. When the 80 ASEA silicon
nitride bars were analyzed by the CARES code as a complete sample, the signif-
icance levels of 54 and 35 percent from the Kolmogorov-Smirnov and Anderson-
Darling goodness-of-fit tests, respectively, were relatively low, indicating a
questionable fit to the proposed Weibull distribution. The lower significance
level for the Anderson-Darling test indicated greater deviation occurring in
the low strength region of the distribution. From the outlier test included
in the CARES code analysis package, the highest strength fracture stress was
detected to be an outlier at the l-percent significance level. Several of the
lower strengths were flagged as outliers at various significance fevels (1, 5,
or 10 percent). Figure 6.2 shows a Weibull plot of the data. From the figure
it appears that the data are bimodal with an outlier point at the highest
strength.

Because of the observed trends, the data were re-analyzed assuming a
censored distribution and removing the highest strength outlier point
(of = 817.2 MPa (1.185x105 psi)) as bad data. Although it is possible that
both failure modes were surface induced, for the sake of this example it is
assumed that the low-strength failures were predominantiy due to volume flaws
and that the high-strength specimens fractured predominantly because of surface
flaws. Since results from fractography of the individual specimens to identify
the various failure modes were not available, the fracture origins had to be
arbitrarily assigned prior to parameter estimation. Note that identifying
individual specimen flaw origins is especially important for small sample
sizes where a plot of the data does not yield clear trends. However, for the
NASA Lewis Si3Ng data, the sample size was large, and clear trends could be
observed, although extra care would be required to determine if the trends were
surface flaw or volume flaw based. From inspection of figure 6.2, we decided
to assign the lowest nine strengths as due to volume flaws and the remainder as
due to surface flaws. The cracks were arbitrarily assumed to be Griffith
cracks, and the total strain energy release rate fracture criterion was used.
This assumption was used only in the calculation of kgg and kpy. The K-S
significance level increased from 0.54 to 0.68, and the A-D significance level
increased from 0.35 to 0.58. This improvement supports the initial assumption

of bimodal behavior. The value of m (the superscript ~ indicates an esti-
mated parameter) changed from 13.4 for the complete sample to ﬁs = 22.8 and

my = 4.13. The value of ;e changed from 686 MPa (9.950x10% psi) for the
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complete sample to ;es = 692 MPa (1.004x10° psi) and ;ev = 1128 MPa
(1.636x109 psi) for the surface and volume flaw distributions, respectively.
Further improvements in the goodness-of-fit scores may be gained by correctly
identifying the location of fracture origins.

From equation (A.82) the norma112ed Batdorf crack density coefficient for
volume flaws is (my + 1) = 4.13 _+ 5.13, and from equatjon (A.72) the scale
parameter ooy is 17.9 MPa (m)3/4 13 (3.742¢10% psi (in.)3/4.13}. For
surface flaws the normalized Batdorf crack density coefficient is 6.0
whereas oos calculated by using equation (A.87a) is 461.3 MPa (m)2/ 132, 8
(9.234x10% psi (in.)2/22.8),

For the SijNg4 fracture data from NASA Lewis, we have obtained goodness-of-
fit significance Tevels as high as 0.78 and 0.88 for the K-S and A-D tests,
respectively, by assuming a particular bimodal flaw distribution. For this

case, 13 volume flaws were assumed, and the MLE's were mg = 21.00, my = 6.79,
ogs = 693 MPa (1.005x10° psi), and ogy = 876 MPa (1.271x10° psi). The 13 vol-

ume flaws did not correspond to the 13 lowest fracture strengths. On the basis
of these goodness-of-fit scores, it is concluded that the data show good
bimodal Weibull behavior.

It should be noted from figure 6.2 that the assumed volume flaw distribu-
tion dominates the failure response at low probabilities of failure. There-
fore, in component design, it is essential to properly account for competing
failure modes; otherwise nonconservative design predictions may result.
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TABLE I. — EXTREME FIBER FRACTURE STRESSES
OF ESK HIPed SILICON CARBIDE (SiC) BARS

Flexure | Strength, Flexure | Strength,

bar MPa bar MPa
1 281.2 41 516.2
2 291.0 42 519.8
3 358.2 43 527.6
4 385.4 44 530.7
5 389.0 45 530.7
6 390.8 a6 545.7
7 391.8 47 548.8
8 402.8 48 552.7
9 412.5 49 559.6
10 413.3 50 562.4
n 413.9 51 563.3
12 417.8 52 566.1
13 418.2 53 566.5
14 426.9 54 570.1
15 437.6 55 572.8
16 440.0 56 575.0
17 441,0 57 576.1
18 442 .5 58 580.0
19 443.8 59 582.6
20 444.9 60 588.0
21 446.2 61 588.6
22 451.5 62 591.0
23 452 1 63 591.0
24 452.7 64 593.3
25 470.4 65 598.7
26 474 .1 66 599.6
27 475.5 67 610.0
28 475.5 68 612.7
29 479.2 69 619.9
30 483.5 70 619.9
31 484 .8 71 622.2
32 486.2 72 622.3
33 488.6 73 640.5
34 492.5 74 649.0
35 493.2 75 657.2
36 496.0 76 660.0
37 505.7 77 664.3
38 511.9 78 673.5
39 512.5 79 673.9
40 513.8 80 725.3
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PROBABILITY OF FAILURE
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FIGURE 6.1. - 90-PERCENT CONFIDENCE BANDS ABOUT THE
WEIBULL LINE FOR ESK HIPPED SILICON CARBIDE

(FRACTURE STRESS DATA GENERATED AT NASA-
LEWIS: NOT ALL DATA POINTS SHOWN: L = 0.0829.)
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PROBABILITY OF FAILURE
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FIGURE 6.2. - COMPLETE SAMPLE. ASSUMED CENSORED
SAMPLE WEIBULL DISTRIBUTIONS. AND OUTLIER IN
ASEA CERAMA HIPpep SILICON NITRIDE (Si3Nq).
(FRACTURE STRESS DATA GENERATED AT NASA-LEWIS:
NOT ALL DATA POINTS SHOWN.)
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PC-CARES Templet Input File

R K Kk ok ok ik o K KOk e e ok o ko ko ok e ok K ok ok ok o o ok o ok kR e ok ok e ok ok ok ok ok K
L T T e L L i T TITI I

MASTER CONTROL INPUT
TITLE : PROBLEM TITLE (ECHOED IN PC-CARES OUTPUT)

NMATS : NO. OF MATERIALS FOR SURFACE FLAW ANALYSIS
---------- (NMATS+NMATV < 101)

«01+ (DEFAULT: NMATS = 0)
NMATV : NO. OF MATERIALS FOR VOLUME FLAW ANALYSIS
---------- (NMATS+NMATV < 101) .

«01+ (DEFAULT: NMATV = 0)
IPRINT : CONTROL INDEX FOR STRESS QUTPUT
--------- (DEFAULT: IPRINT = 0)

#14 0 : DO NOT PRINT FRACTURE DATA

_________ 1 : PRINT FRACTURE DATA

NGP : NO. OF CAUSSTAN QUADRATURE POINTS (15 OR 30)
---------- (DEFAULT: NGP = 15)

0 e ke ok ok ok o oK K 3 ok K KO K K OK R OK K kR K K okl ok ok ok ok ok sk sk ok sk o ok ok o ok ok ok ook K Kk ok ok ok ok o ok ok s ok ok o o
$ENDX : END OF MASTER CONTROL INPUT

oo o KK o R S KK K SR Sk o R kR ko sk ok ok R Kok sk ok ok sk ok Kk Kok o R ok ok
MATERIAL CONTROL INPUT
TITLE : MATERIAL TITLE (ECHOED IN PC-CARES QUTPUT)

MATID : MATERTAL IDENTIFICATION NO. FROM THE FINITE ELEMENT
--------- MATERTAL PROPERTY CARD (IF POSTPROCESSING IS NOT
+0000001 BEING PERFORMED THIS ENTRY SHOULD BE SOME UNIQUE NO.)
--------- (NO DEFAULT)

ID1 : CONTROL INDEX FOR EXPERIMENTAL DATA
--------- (NO DEFAULT)
1 : UNTFORM UNTAXTAL TENSILE SPECIMEN TEST DATA
--------- 2 : FOUR-POINT BEND TEST DATA
3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SHAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
UNIFORM UNIAXTAL TENSILE SPECIMEN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA
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: CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS

(NO DEFAULT)
1 : VOLUME
2 : SURFACE

: CONTROL INDEX FOR VOLUME FRACTURE CRITERION

(NO DEFAULT)

1 : NORMAL STRESS FRACTURE CRITERION
(SEEAR-INSENSITIVE CRACK)

2 : MAYTMUM TENSILE STRESS CRITERION

3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
(G SUB T)

4 : WEIBULL PIA MODEL

5 : SHETTY’S SEMI-EMPIRICAL CRITERION

: CONTROL INDEX FOR SHAPE OF VOLUME CRACKS

(NO DEFAULT)
1 : GRIFFITH CRACK
2 : PENNY-SHAPED CRACK

: CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK

DENSITY COEFFICIENT (K SUB B) FROM TEST DATA

(DEFAULT: IKBAT = 0)

0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)

1 : SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TO OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE
SELECTED BY THE ID2 AND ID3 INDICES)

: POISSON’S RATIO

(DEFAULT: PR = 0.25)

: CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL

PARAMETERS FROM THE EXPERIMENTAL FRACTURE DATA
(DEFAULT: MLORLE = 0)

0 : MAXTMUM LIKELTHOOD

1 : LEAST-SQUARES LINEAR REGRESSION

: HEIGHT OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

: OUTER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

: INNER LOAD SPAN OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

: WIDTH OF THE FOUR-POINT BEND BAR

(NO DEFAULT)

o ok e ok ok ook ok ok ok ok ok ok kK ok o ok K sk KoK KOk ok ok sk ok ok ok ok ok ok ok ok sk ke sk ok ok ok ok ok ok ok ok ok ook oK K K Kk ok ok ok

SENDM

: END OF TEMPERATURE INDEPENDENT MATERIAL CONTROL INPUT

*********************************t*t************************************
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TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL

NERR R R R R R R R R R R N N R N NN NN R RN

PLEASE NOTE THE FOLLOWING:

1. FRACTURE STRESSES FOR A GIVEN TEMPERATURE CAN BE INPUT IN
ARBITRARY ORDER.

2. THE DEFAULT MAXIMUM NUMBER OF TEMPERATURE SETS IS 10.

3. THE DEFAULT MAXT:UM NUMBER OF FRACTURE SPECIMENS PER TEMPERATURE IS
150.

4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN
OF THE MOR BAR.

TDEG TEMPERATURE OF THIS SET
00070.0000
NUT : NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE
*079x
MOR : S-URFACE, V-OLUME, OR U-NKNOWN FLAW AND RESPECTIVE STRESS
B T e T *
SYV 0.6257900000E+03 0.8034700000E+03 0.5272300000E+03
SSS  0.6911000000E+03 0.6831100000E+03 0.6854900000E+03
SSS  0.6950100000E+03 0.6721000000E+03 0.6569200000E+03
SSS 0.6616800000E+03 0.7270500000E+03 0.7258500000E+03
SSS 0.6707500000E+03 0.7029700000E+03 0.6114900000E+03
SSS  0.6401800000E+03 0.7045300000E+03 0.7254400000E+03
VSS 0.5725000000E+03 0.6251400000E+03 0.6741300000E+03
SSS 0.6587400000E+03 0.6501400000E+03 0.7164300000E+03
SSS 0.6621400000E+03 0.6997700000E+03 0.6645400000E+03
SSS 0.7156300000E+03 0.6045300000E+03 0.6664400000E+03
YVS 0.5605800000E+03 0.4159200000E+03 0.6214600000E+03
SSS 0.6311300000E+03 0.7254400000E+03 0.6940100000E+03
SSS 0.6770800000E+03 0.7251700000E+03 0.7126000000E+03
SSS  0.7156300000E+03 0.7173200000E+03 0.7029200000E+03
VSS 0.5457700000E+03 0.7323300000E+03 0.6717300000E+03
SSS  0.6837300000E+03 0.6144200000E+03 0.6636100000E+03
SSS 0.6490400000E+03 0.6867500000E+03 0.7157700000E+03
SSS  0.7044700000E+03 0.8570300000E+03 0.6641400000E+03
SSS  0.6215800000E+03 0.7165100000E+03 0.7028800C000E+03
8SS 0.6515900000E+03 0.7028810000E+03 0.7060500000E+03
S8V 0.7100500000E+03 0.6550600000E+03 0.4583600000E+03
SSS 0.6688200000E+03 0.6597400000E+03 0.6428400000E+03
SSS  0.6093200000E+03 0.6711600000E+03 0.6768300000E+03
SSS  0.6210000000E+03 0.6870000000E+03 0.6221500000E+03
SVS 0.6620500000E+03 0.5950400000E+03 0.6783500000E+03
SSS  0.7288800000E+03 0.6223700000E+03 0.6798500000E+03
\' 0.5199000000E+03
g S o m Kmmm—mm *

****}******************************#*******************************#****

SENDT

3 ok ok ok ok ok ok o sk dk o o e ok ok 3k ok ke ok Kok koo ko s kol sk sk s ok ok ok ook ko sk ok 0K 0k ok ok sk Rk ok ok ko ol ko ok ok ok kokok

END OF DATA FOR THE ABOVE TEMPERATURE

: END OF DATA FOR THE ABOVE MATERIAL
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MATERIAL CONTROL INPUT

TITLE : MATERIAL TITLE (ECHOED IN PC-CARES OQUTPUT)

MATID . MATERIAL IDENTIFICATION NO. FROM THE FINITE ELEMENT
--------- MATERTAL PROPERTY CARD (IF POSTPROCESSING IS NOT
40000002 BEING P=RFORMED THIS ENTRY SHOULD BE SOME UNIQUE NO.)
--------- (NO DEFAULT)

D1 . CONTROL INDEX FOR EXPERIMENTAL DATA
--------- (NO DEFAULT)
454 1 : UNTFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
--------- 2 : FOUR-POINT BEND TEST DATA
3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SEAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA

D4 . CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS
......... (NO DEFAULT)

«2x 1 : VOLUME
_________ 2 : SURFACE

ID2S . CONTROL INDEX FOR SURFACE FRACTURE CRITERION
--------- monmmmm)
+34 NORMAL STRESS FRACTURE CRITERION
--------- (SHEAR-INSENSITIVE CRACK)
3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
(G SUB T)
4 : WEIBULL PTA MODEL
5 : SEETTY’S SEMI-EMPIRICAL CRITERION

D38 . CONTROL INDEX FOR SHAPE OF SURFACE CRACKS
--------- (NO DEFAULT)
sls GRIFFITH CRACK

————————— (ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)
(ASSOCIATED WITH SHETTY’S SEMI-EMPIRICAL CRITERION)
3 : GRIFFITH NOTCH
(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRIT.)
(ASSOCIATED WITH SHETTY’S SEMI-EMPIRICAL CRITERION)
4 : SEMICIRCULAR CRACK
(ASSOCIATED WITH SHETTY’S SEMI-EMPTRICAL CRITERION)

IKBAT : CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK
————————— DENSITY COEFFICIENT (K SUB B) FROM TEST DATA
*1x (DEFAULT: IKBAT =

————————— 0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)
1 : SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TGO OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK SHAPE
SELECTED BY THE ID2 AND ID3 INDICES)
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PR : POISSON’S RATIO
S —— (DEFAULT: PR = 0.25)

000002500
MLORLE . CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL
--------- PARAMETERS FROM THE EXPERIMENTAL FRACTURE DATA
*Ox (DEFAULT: MLORLE = 0)
--------- 0 : MAXIMUM LIKELIHOQOD
1 : LEAST-SQUARES LINEAR REGRESSION
DH . HEIGHET OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)
0000. 00350
DL1 . OUTER LOAD SPAN OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)
0000 . 04000
DL2 . INNER LOAD SPAN OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)
0000. 02000 ,
DW : WIDTH OF THE FOUR-POINT BEND BAR
---------- (NO DEFAULT)  °
0000 . 00450

3k ok o k3 3k dk ok ok ok s ok ok ok ok ok ok ok ok R s ok ok ko ok ok ok ok sk koo 3 ok dkook Ok ok sk kKo Kok ok K kol 3 ok ok ok ook ok ok ok ok ok ok ok %

SENDM : END OF TEMPERATURE INDEPENDENT MATERIAL CONTROL INPUT

% 2 2k ok ok ok ok ok e e 3k ok ok o kK ok sk ok ok ok ok kAR ok ok ok oK ok ok ke ok kol ok ko ok ok ok ok kol ook ok kool kool ok ok ok Kok Ok

TEMPERATURE DEPENDENT MATERIAL CONTROL INPUT DATA
FOR THE ABOVE MATERIAL

PLEASE NOTE THE FOLLOWING:
1. FRACTURE STRESSES FOR A GIVEN TEMPERATURE CAN BE INPUT IN
ARBITRARY ORDER.
2. THE DEFAULT MAXIMUM NUMBER OF TEMPERATURE SETS IS 10.
3. THE DEFAULT MAXIMUM NUMBER OF FRACTURE SPECIMENS PER TEMPERATURE IS
150.
4. REGARDLESS OF THE FRACTURE ORIGIN LOCATION, THE FRACTURE STRESS
INPUT VALUE IS THE EXTREME FIBER STRESS WITHIN THE INNER LOAD SPAN

OF THE MOR BAR.

R RN R RN RN RN RN R N RN RN NN RN RN N RN NN
TDEG TEMPERATURE OF THIS SET

00070.0000

NUT : NUMBER OF FRACTURE SPECIMENS AT THIS TEMPERATURE
ao079s
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MOR

B T et W e *
Syv O.6257900000E+03 0.6034700000E+03 0.5272300000E+03
SSS  0.6911000000E+02 0.6831100000E+03 0.68354300000E+03
8SS 0.6950100000E+03 0.6721000000E+03 0.6569200000E+03
SSS 0.6616800000E+03 0.7270500000E+03 0.7259500000E+03
8SS 0.6707500000E+02 0.7029700000E+03 0.6114900000E+03
SSS 0.6401800000E+03 0.7045300000E+03 0.7254400000E+03
¥SS 0.5725000000E+03 0.6251400000E+03 0.6741300000E+03
SSS 0.6597400000E+03 0.6501400000E+03 0.7164300000E+03
SSS  0.6621400000E+02 0.6997700000E+03 0.6645400000E+03
SSS  0.7156300000E+02 0.6045300000E+03 0.6664400000E+03
VVS 0.5605800000E+02 0.4159200000E+03 0.6214600000E+03
5SS 0.6311300000E+CZ 0.7254400000E+03 0.6940100000E+03
SSS 0.6770800000E+02 0.7251700000E+03 0.7126000000E+03
SSS 0.7156300000E+02 0.7173200000E+03 0.7029200000E+03
VSS 0.5457700000E+03 0.7323300000E+03 0.6717300000E+03
SSS 0.6837300000E+03 0.6144200000E+03 0.6636100000E+03
SSS 0.6490400000E+02 0.6867500000E+03 0.7157700000E+03
SSS  0.7044700000E+03 0.6570300000E+03 0.6641400000E+03
SSS 0.6215900000E+03 0.7165100000E+03 0.7028800000E+03
SSS 0.6515900000E+03 0.7028810000E+03 0.7060500000E+03
SSV  0.710050000CE+03 0.6550600000E+03 0.4583600000E+03
SSS 0.6688200000E+03 0.6597400000E+03 0. 6426400000E+03
SSS 0.6093200000E+03 0.6711600000E+03 0.6768300000E+03
SSS 0.6210000000E+03 0.6870000000E+03 0Q.6221500000E+03
SVS 0.6620500000E+03 0.5950400000E+03 (O.68783500000E+03
SSS  0.7286600000E+03 0.6223700000E+03 0.6798500000E+03
v 0. 5199000000E+03

B B e o e *

e ok ok ok ok ok ok ok ok ook s o Ok ook ok ok kR oKk kR K R K ok K R kR KOk ok ok o ok oKk ok ok ok o o ok ok 3k ok ok ok ok ok ok ok ok o K ok

SENDT

s ok s ok ok ok sk ok ok ok ook sk ok sk ok ok ok o ok ok ok sk ok Rk sk ok ok ok R ok K ok ok sk oKk sk sk 3k sk ok ok ok ok ok K ok ok ok ok okl ok ok o ok o ok K ok

¢ S- URFACE V-OLUME, OR U-NKNOWN FLAW AND RESPECTIVE STRESS

END OF DATA FOR THE ABOVE TEMPERATURE

: END OF DATA FOR THE ABOVE MATERIAL
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PC-CARES Output File

0000000000000000000000000000000000000000000000000000000000000000000000000
€000000000000000000000000000000000000000000000000000000000000000000000000

00 00
0o aa
aq oa
00 CCCCeC A RRRRRRRR EEEEEEEEE BRERRRR 00
6o C C AA R R E S S 00
Q0 ¢ A A R R E S 00
0o C A A RRRRRRRR EEEEEEE RRERRRR] 60
6o C AAAAAAAAA R R E S 6o
aa C c A A R R E S S a0
ao cceccee A AR R EEEEEEEEE SS888SS (1
00 ae
(] ea
00 U 1]
a0 CERAMICS ANALYSIS AND RELIABILITY EVALUATION OF STRUCTURES ao
Qo Q0
00 - Q0

0000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000000000000000000000000000000000000000000000000000000

ok ok ok ok ok ok o ko ok ko ok ok ok ko ok ok ok ok ok ok e ok o o ok Kk o K ko K o o ok oK o ok

* *
* ECHO OF MASTER CONTROL INPUT *
* *

e 3k ok 3k A ok K ik koK ok ok kol ok ok ok sk sk ook ok ok ok ok sk koo ok sk ok ok ok ok ok ke ook ok ok e ok ok ok

TITLE = EXAMPLE PROBLEM : STATISTICAL MATERTAL PARAMETER ESTIMATION

3 = CONTROL INDEX FOR OUTPUT OF ANALYSIS (ID44)
1 : VOLUME FLAW ANALYSIS QUTPUT ONLY
2 : SURFACE FLAW ANALYSIS OUTPUT ONLY
3 : VOLUME FLAW AND SURFACE FLAW ANALYSIS QUTPUT

1 = NUMBER OF MATERIALS FOR SURFACE FLAW ANALYSIS (NMATS)
1 = NUMBER OF MATERIALS FOR VOLUME FLAW ANALYSIS (NMATV)
30 = NUMBER OF GAUSSIAN QUADRATURE POINTS, EITHER 15 OR 30 (NGP)
#

1 = CONTROL INDEX FOR STRESS OUTPUT (IPRINT)
0 : DO NOT PRINT ELEMENT STRESSES AND/OR FRACTURE DATA
1 : PRINT ELEMENT STRESSES AND/OR FRACTURE DATA
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* *
* ECHO OF MATERIAL CONTROL INPUT *
* *
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= SI3N4 SPECIMEN DATA FROM ASEA CERAMA FOR VOLUME FLAW ANALYSIS

MATERIAL IDENTIFICATION NUMBER (MATID)

CONTROL INDEY FOR VOLUME OR SURFACE FLAW ANALYSIS (ID4)
: VOLUME

SURFACE

CONTROL INDEX FOR METHOD OF CALCULATING WEIBULL PARAMETERS

FROM THE EXPERIMENTAL FRACTURE DATA (MLORLE)

1:

3 :

5 :

TITLE
1 =
1:
1
0=
0
5 =
1
2
4
3=

1

[SABP- S SV ]

e
It

2

: MAXTMUM LIKELIHOOD

LEAST-SQUARES LINEAR REGRESSION

CONTROL INDEX FOR EXPERIMENTAL DATA (ID1)

: UNIFORM UNIAXIAL TENSILE SPECIMEN TEST DATA

: FOUR-POINT BEND TEST DATA

DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SHAPE PARAMETER AND SCALE PARAMETER)

: CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF

UNIFORM UNIAXTAL TENSILE SPECIMEN TEST DATA
CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA

CONTROL INDEX FOR VOLUME FRACTURE CRITERION (ID2V)

: NORMAL STRESS FRACTURE CRITERION
(SHEAR-INSENSITIVE CRACK)

: MAXTMUM TENSILE STRESS CRITERION

: COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
: WEIBULL PIA MODEL

: SHETTY’S SEMI-EMPIRICAL CRITERICON

CONTROL INDEX FOR SHAPE OF VOLUME CRACKS (ID3V)
1:
: PENNY-SHAPED CRACK

GRIFFITH CRACK

= CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK DENSITY
COEFFICIENT
(K SUB B) FROM TEST DATA (IKBAT)

1

SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)

: SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TO OCCUR

ACCORDING TO THE FRACTURE CRITERION AND CRACK
SHAPE SELECTED BY THE ID2 AND ID3 INDICES)

.2500 = POISSON’S RATIO (PR)
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* *
* STATISTICAL ANALYSIS OF FRACTURE SPECIMEN DATA «
* *
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ECHO OF SPECIMEN INPUT DATA, IN ASCENDING ORDER OF FRACTURE STRESS

.4000E-01 = OUTER LOAD SPAN OF FOUR-POINT BEND BAR

.2000E-01 = INNER LOAD SPAN

.3500E-02 = DEPTH OF SPECIMEN

.4500E-02 = WIDTH OF SPECIMEN

79 = NUMBER OF SPECIMENS IN BATCH 70.000 = TEMPERATURE OF BATCH

"S"URFACE OR "V"OLUME OR "U®NKNOWN FLAW ORIGIN AND RESPECTIVE FAILURE STRESS

VVW  .4159E+03 .4584E+03 .5199E+03
VW .5272E+03 .5458E+03 .5606E+03
VvV . 5725E+03 .5950E+03 .6035E+03
SSS  .6045E+03 .6093E+03 .6115E+03
SSS  .6144E+03 .6210E+03 .6215E+03
SSS  .6216E+03  .6222E+03 .6224E+03
SSS  .6251E+03  .6258E+03 .6311E+03
5SS .B6402E+03  .6426E+03 . 6490E+03
SSS  .B6501E+03 .6516E+03 .6551E+03
SSS  .B6569E+03  .6570E+03  .6597E+03
SSS  .B597E+03 .6617E+03 .6621E+03
SSS  .6621E+03  .6636E+03 .6641E+03
SSS  .8645E+03  .6664E+03 .6688E+03
8S§  .6708E+03 .8712E+03 .6717E+03
SSS  .6721E+03 .6741E+03  .B768E+03
885  .6771E+03  .6784E+03 .6799E+03
SSS  .6831E+03  .6837E+03 .6855E+03
SSS  .6867E+03  .6870E+03 .6911E+03
SSS  .B8940E+03  .6950E+03 .6998E+03
SSS  .7029E+03 .7029E+03 .7029E+03
SSS  .7030E+03  .7045E+03 .7045E+03
SS§ .7061E+03  .7101E+03  .7126E+03
SS8S  .7156E+03  .7156E+03 .7158E+03
S8S  .7164E+03  .7165E+03  .7173E+03
SSS  .7252E+03 .7254E+03 .7254E+03
SSS  .7260E+03 .7271E+03 .7287E+03
S .7323E+03
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-~- STEFANSKY OUTLIER TEST OF SPECIMEN FRACTURE STRESSES ---

RESULTS FROM THE STEFANSKY OUTLIER TEST FOR TEMP. = 70.0000
FATLURE STRESS

.4159E+03 DEVIATES FROM THE MAIN TREND OF TEE DATA AT THE 1%
SIGNIFICANCE LEVEL

.4584E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 1%
SIGNIFICANCE LEVEL

.5199E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 1%
SIGNIFICANCE LEVEL

.5272E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 5%
SIGNIFICANCE LEVEL

.5458E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 10%
SIGNIFICANCE LEVEL

DEVIATION FROM THE MAIN TREND OF THE DATA MAY
INDICATE BAD VALUES. MULTIPLE DEVIATIONS FROM THE SAME
REGION OF THE DISTRIBUTION INDICATE THAT EITHER A CONCURRENT
OR A PARTTALLY CONCURRENT FLAW POPULATION HAS BEEN DETECTED
(NOTE THAT A CONCURRENT FLAW POPULATION MAY BE PRESENT BUT NOT
BE DETECTED BY THE OUTLIER TEST). DEVIATIONS QCCURRING
IN THE SAME REGION OF THE DISTRIBUTION WITH ALL THREE
SIGNIFICANCE LEVELS (1%, 5% AND 10%) PRESENT INDICATE A
CONCURRENT FLAW POPULATION. DEVIATIONS SHOULD BE EXAMINED AND
TREATED ACCORDINGLY (I.E. IGNORE, CENSOR, ADJUST OR ELIMINATE
STRESS) . JUDGEMENT OF ACTION TAKEN CAN BE DETERMINED FROM THE
GOODNESS-BF-FIT TESTS.
THE OUTLIER TEST IS NO SUBSTITUTE FOR GRAPHICAL EXAMINATION!!!

-- TEMP. DEP. WEIBULL MODULUS AND CHARACTERISTIC STRENGTH WITH 90% --
CONFIDENCE BOUNDS DETERMINED BY MAXIMUM LIKELIHOOD ANALYSIS

NOTE: $0% CONFIDENCE BOUNDS ON PARAMETERS DETERMINED FROM COMPETING FAILURE
MODES (CENSORED DATA) ARE APPROXIMATE.
FOR CENSORED DATA THE UNBIASED VALUE OF THE PARAMETER "M" IS NOT
GIVEN.
FOR SAMPLE SIZES LESS THAN 4, CONFIDENCE LIMITS ARE NOT GIVEN.

TEMP . M BIASED M UNBIASED UP M LOW M
CHAR. STR. UP C.S. LOW C.S. MEAN STD. DEV.
YOLUME 70.0000 .4130E+01 .5666E+01 .2179E+01

.1128E+04 .1342E+04 .9542E+03 .1024E+04 .2791E+03
SURFACE 70.0000 .2281E+02 .2619E+02 .1920E+02

.6917E+03 .6981E+03  .6853E+03 .6755E+03 .3684E+02
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STATISTICS FROM THE GOODNESS-OF-FIT TESTS FOR TEMP. = 70.0000

KOLMOGOROGV-SMIRNOV TEST
ORDER FRAC. STR. WEIB. PROB. OF FAIL. D+ FACTOR D- FACTOR SIGNIF. LEVEL

1 .4159E+03 .0161 -.0035 .0161 99.0000
2 .4584E+03 .0240 .0013 .0114 99.0000

3 .5199E+03 .0414 -.0034 .0161 99.0000
4 .5272E+03 .0443 .0064 .0063 99.0000
5 .5458E+03 .0529 .0104 .0023 99.0000

6 .5606E+03 .0620 .0140 -.0013 99.0000
7 .5725E+03 .0714 .0172 -.0045 99.0000
8 .5950E+03 .0983 .0029 .0087 99.0000
9 .6035E+03 .1130 .0009 .0118 99.0000
10 .6045E+03 .1151 .0114 .0012 99.0000
11 .8093E+03 .1254 . .0139 -.0012 99.0000
12 .6115E+03 .1306 .0214 -.0088 99.0000
13 .6144E+03 .1379 .0267 -.0140 99.0000
14 .6210E+03 .1567 .0205 -.0079 99.0000
15 .6215E+03 .1581 .0317 -.0191 99.0000
16 .6216E+03 .1585 .0440 -.0313 98.0000
17 .6222E+03 .1603 .0549 -.0422 97.1339
18 .6224E+03 .1610 .0668 -.0541 87.2422
19 .6251E+03 .1704 .0701 -.0675 83.1735
20 .6258E+03 .1726 .0805 ~.0679 68.5012
21 .6311E+03 .1930 .0728 -.0602 79.6191
22 .6402E+03 .2346 .0439 -.0312 96.0000
23 .6426E+03 .2476 .0435 -.0309 99.0000
24 .6490E+03 .2853 .0185 -.0058 99.0000
25 .6501E+03 .2924 .0241 -.0114 99.0000
26 .6516E+03 .3020 .0271 -.0145 99.0000
27 .6551E+03 .3262 .0156 -.0030 99.0000
28 .6569E+03 .3399 .0146 -.0019 99.0000
29 .6570E+03 . 3407 .0264 -.0137 99.0000
30 .6597E+03 .3616 .0181 -.00585 99.0000
31 .6597E+03 .3616 .0308 -.0181 99.0000
32 .6617E+03 .3773 .0277 -.0151 99.0000
33 .6621E+03 .3804 .0374 ~-.0247 899.0000
34 .6621E+03 .3811 .0493 -.0366 99.0000
35 .6636E+03 .3935 .0496 -.0369 99.0000
36 .6641E+03 . 3980 L0577 -.0450 95.5201
37 .6645E+03 .4015 .0669 -.0542 87.1359
38 .6664E+03 .4182 .0628 -.0502 91.3909
39 .6688E+03 .4398 .0538 -.0412 97.5998
40 .6708E+03 . 4580 .0484 -.0357 99.0000
41 .6712E+03 .4619 .0571 -.0445 95.8855
42 .6717E+03 .4674 .0643 -.0518 89.9719
43 .6721E+03 .4709 .0734 -.0607 78.8750
44 .6741E+03 .4909 .0661 -.0534 88.0606
45 .6768E+03 .5182 .0515 -.0388 98.4919
46 .6771E+03 .5207 .0616 -.0489 92.5627
47 .6784E+03 .5338 .0611 -.0484 92.9632
48 .6799E+03 .5495 .0681 -.0454 95.2717
49 .6831E+03 .5842 .0360 -.0234 89.0000
50 .6837E+03 .5909 .0420 -.0293 99.0000
51 .6855E+03 .6100 .0356 -.0229 99.0000
52 .6867E+03 .6237 .0345 -.0219 99.0000
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53 .6870E+03 .6264 .0445 -.0318
54 .6911E+03 .6712 .0124 .0003
55 .6940E+03 . 7027 -.0065 .0192
56 .6950E+03 .7135 -.0046 .0173
57 .6998E+03 .7635 -.0419 .0546
58 .7029E+03 .7946 -.0604 .0731
58 .7029E+03 .7946 -.0478 .0604
60 .7029E+03 .7950 -.0355 .0482
61 . 7030E+03 .79585 -.0233 .0360
62 .7045E+03 .8099 -.0251 .0378
63 .7045E+03 .8105 -.0130 .0257
64 .7061E+03 . 8247 -.0146 .0272
65 .7101E+03 .8598 -.0370 .0496
66 .7126E+03 .8801 -.0447 .0574
67 .7156E+03 .8022 -.0541 .0667
68 .7156E+03 .9022 -.0414 .0541
69 .7158E+03 .9031 -.0297 .0424
70 .7164E+03 .9076 -.0215 .0341
71 .7165E+03 .9081 ~.0094 .0220
72 .7173E+03 .9134 -.0020 .0146
73 .7252E+03 .9549 -.0309 .0435
74 .7254E+03 .9560 -.0183 .0320
75 .7254E+03 .9560 -.0067 .0193
76 .7260E+03 .9581 .0039 .0087
77 .7271E+03 .9624 .0123 .0003
78 .7287E+03 .9680 .0193 -.0067
79 .7323E+03 .9786 .0214 -.0088
KOLMOGOROV-SMIRNOV TEST YIELDS STATISTIC D = MAX (b+,D-) = .0805

WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 68.5%

ANDERSON-DARLING TEST YIELDS STATISTIC Ax+2 = .6725
WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 58.3%

89.0000
99.0000
99.0000
95.0000
97.2613
79.2561
93.5064
99.0000
99.0000
99.0000
99.0000
99.0000
98.9973
95.7363
87.3420
97.5075
96.0000
99.0000
99 .0000
89.0000
99.0000
99.0000
99.0000
89.0000
99.0000
99.0000
99.0000

KANOFSKY-SRINIVASAN 90% CONFIDENCE BANDS ABOUT THE WEIBULL DISTRIBUTION FOR

TEMP. = 70.0000

THE KANOFSKY-SRINIVASAN FACTOR FOR THIS DISTRIBUTION IS .0836

ORD.

© 001U Why -

FRAC. STR. WEIB. PROB. OF FAIL.

.4159E+03
.4584E+03
.5199E+03
.5272E+03
.5458E+03
.5606E+03
.5725E+03
.5950E+03
.6035E+03
.6045E+03
.6093E+03
.6115E+03
.6144E+03

.0161
.0240
.0414
.0443
.0529
.0620
.0714
.0983
.1130
.1151
.1254
.1305
.1379

SIZE OF 79

.0997
.1077
.1250
.1279
.1365
.1458
.1551
.1820
.1967
.1988
.2090
.2141
.2215
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UPP.CONF .BAND MED. RANK

.0088
.0214
.0340
.0466
.0592
.0718
.0844
.0970
.1096
.1222
.1348
.1474
.1599

FOR A SAMPLE

LOW. CONF . BAND

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0147
.0294
.0315
.0418
.0469
.0542



.6210E+03
.6215E+03
.6216E+03
.6222E+03
.6224E+03
.6251E+03
.6258E+03
.6311E+03
.6402E+03
.6426E+03
.6490E+03
.6501E+03
.6516E+03
.6551E+03
.6569E+03
.6570E+03
.6597E+03
.6597E+03
.6617E+03
.6621E+03
.6621E+03
.6636E+03
.6641E+03
.6645E+03
.6664E+03
.6688E+03
.6708E+03
.6712E+03
.6717E+03
.6721E+03
.6741E+03
.6768E+03
.6771E+03
.6784E+03
.6799E+03
.6831E+03
.6837E+03
.6855E+03
.6867E+03
.6870E+03
.6911E+03
.6940E+03
.6950E+03
.6998E+03
.7029E+03
.7029E+03
.7029E+03
.7030E+03
.7045E+03
.7T045E+03
.7061E+03
.7101E+03
.7126E+03
.7156E+03
.7156E+03
.7158E+03
.7164E+03
.7165E+03
.7173E+03
.7252E+03

.1567
.1581
.1585
.1603
.1610
.1704
.1726
.1930
.2346
.2476
.2853
.2924
.3020
.3262
. 3399
. 3407
.3616
.3616
.3773
.3804
.3811
.3935
.3980
.4015
.4182
.4398
.4580
.4619
.4674
.4709
.4909
-.5182
.5207
.5338
.5495
.5842
.5808
.6100
.6237
.6264
.6712
L7027
.7135
.7635
.7946
.7946
.7950
.7955
. 8099
.8105
. 8247
.8598
.8801
.9022
.9022
.8031
.9076
.9081
.9134
.9549

.2403
.2418
.2422
.2440
. 2447
.2540
.2563
.2766
.3182
.3313
.3690
.3760
.3856
.4098
.4235
.4243
.4453
.44583
.4609
.4640
.4647
.4771
.4816
.4851
.5018
.5234
.5416
.5455
.5510
.5546
.5745
.6018
. 6043
.6175
.6332
.6679
.6745
.6936
.7073
.7100
.7548
.7864
L7971
.8471
.8782
.8782
.8786
.8791
.8936
.8941
.9083
.9434
.9638
.9858
.9858
.9867
.9912
.9917
.89970
1.0000
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.1725
.1851
.1977
.2103
.2229
.2355
.2481
.2607
.2733
.2859
.2985
L3111
.3237
.3363
.3489
.3615
L3741
.3866
.3992
.4118
.4244
.4370
.4496
.4622
.4748
.4874
. 5000
.5126
.5252
.5378
. 5504
.5630
.5756
.5882
.6008
.6134
.6259
.6385
.6511
.6637
.6763
.6889
.7015
7141
L7287
.7393
.7519
.7645
L7771
. 7897
.8023
.8149
.8275
.8401
.8526
.8652
.8778
.8904
.9030
.9156

.0731
.0745
.0748
.0767
.0774
.0867
.0890
.1094
.1510
.1640
.2017
.2088
.2183
. 2425
.2562
L2571
.2780
.2780
.2937
.2967
.2975
.3098
.3144
.3178
.3345
.3562
3743
.3782
. 3837
.3873
.4073
.4345
.4371
. 4502
.4659
.5006
.5073
.5263
.5401
.5428
.5875
.6191
.6298
.6798
.7110
.7110
.7114
.711¢
.7263
. 7269
.7411
.7761
.7965
.8185
.8185
.8195
.8239
.8245
. 8297
.8713



74 .7254E+03 .9560 1.0000 .9282 .8724
75 .7254E+03 .9560 1.0000 .9408 .8724
76 .7260E+03 .9581 1.0000 .8534 .8745
77 .7271E+03 .9624 1.0000 .9660 .8787
78 .7287E+03 .9680 1.0000 .9786 . 8844
79 .7323E+03 .9786 1.0000 .9912 . 8950

4 ok ke ok ok K ook KK ko ok ok ok e koo K ok ko ok ko ok e K ko 0 R K K ok K K ok ok Kk ok kK
* *
* VOLUME FLAW PARAMETER ANALYSIS *
* *
e ok e ok ok ok K ek ok K Ak ki K I ko Ok 3Ok Kk K sk ik ko i ko k3 ok ke sk e ok ok ok ok ok ok ok

x++» BATDORF MODEL --- CRACK ORIENTATION, CRACK SHAPE, xwx«
AND FRACTURE CRITERION ARE CONSIDERED

--- TEMPERATURE DEPENDENT MATERIAL PARAMETERS FOR MATERIAL NUMBER 1
WEIBULL MODULUS (SHAPE PARAMETER), M (DIMENSIONLESS)
NORMALIZED BATDORF CRACK DENSITY COEFFICIENT, K (DIMENSIONLESS)
SCALE PARAMETER, SP (UNITS OF STRESS+VOLUME-«~(1/M))
TEMPERATURE \ BIASED K SP
70.0000 .4130E+01 .5130E+01 .1787E+02

FRACTURE CRITERION = COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
CRACK SHAPE = GRIFFITH CRACK

o 3 sk ko ok ok ok ok ok ok ok ok ok ok ok ok sk ok ook ok ok ok Kk oKk ok o e s ok ke ok ok ok ok ok ok ok ok ok % ok ok ok

* *
* ECHO OF MATERIAL CONTROL INPUT *
* *

****************************************************

TITLE = SI3N4 SPECIMEN DATA FROM ASEA CERAMA FOR SURFACE FLAW ANALYSIS

2 = MATERIAL IDENTIFICATION NUMBER (MATID)

2 = CONTROL INDEX FOR VOLUME OR SURFACE FLAW ANALYSIS (ID4)
1 : VOLUME
2 : SURFACE
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0 = CONTROL INDEX FOR METHOGD OF CALCULATING WEIBULL PARAMETERS
FROM THE EXPERIMENTAL FRACTURE DATA (MLORLE)
0 : MAXIMUM LIKELIHROOD
1 : LEAST-SQUARES LINEAR REGRESSIGN
5= CUNTROL INDEX FOR EXPERIMENTAL DATA (ID1)
1 : UNIFORM UNIAXTAL TENSILE SPECIMEN TEST DATA
2 : FOUR-POINT BEND TEST DATA
3 : DIRECT INPUT OF THE WEIBULL PARAMETERS, M AND SP
(SHAPE PARAMETER AND SCALE PARAMETER)
4 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
UNIFORM UNIAXTAL TENSILE SPECIMEN TEST DATA
5 : CENSORED DATA FOR SUSPENDED ITEM ANALYSIS OF
FOUR-POINT BEND TEST DATA
3= CONTRDL INDEX FOR SURFACE FRACTURE CRITERION (ID2S)

1 : NORMAL STRESS FRACTURE CRITERION
(SHEAR -INSENSITIVE CRACK)
3 : COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
4 : WEIBULL PIA MODEL
5 : SHETTY’S SEMI-EMPIRICAL CRITERION

et
It

CONTROL INDEX FOR SHAPE OF SURFACE CRACKS (ID3S)
-1 : GRIFFITH CRACK
(ASSOCTIATED WITH STRAIN ENERGY RELEASE RATE CRITERION)
(ASSOCIATED WITH SHETTY’S SEMI-EMPIRICAL CRITERION)
3 : GRIFFITH NOTCH
(ASSOCIATED WITH STRAIN ENERGY RELEASE RATE CRITERION)
(ASSOCTATED WITH SHETTY’S SEMI-EMPIRICAL CRITERION)
4 : SEMICIRCULAR CRACK
(ASSOCTATED WITH SHETTY’S SEMI-EMPIRICAL CRITERION)

1 = CONTROL INDEX FOR METHOD OF CALCULATING BATDORF CRACK DENSITY
COEFFICIENT
(K SUB B) FROM TEST DATA (IKBAT)
0 : SHEAR-INSENSITIVE METHOD (MODE I FRACTURE ASSUMED)
1 : SHEAR-SENSITIVE METHOD (FRACTURE ASSUMED TG OCCUR
ACCORDING TO THE FRACTURE CRITERION AND CRACK
SHAPE SELECTED BY THE ID2 AND ID3 INDICES)

.2500 = POISSON’S RATIO (PR)

o o e ok ke ok K K kA kR sk ke R Sk ki ok ke ok ko sk koK ko ok R R ko koK ok ok kR KOk ok K kK ok ok K

* *
* STATISTICAL ANALYSIS OF FRACTURE SPECIMEN DATA =
* *

e s ot s e ok o ok Rk ok ok ok e s ok ok ok ki ok ok R ok K kK R R KOk 0k ok ok ko kok ok ok ROk e kK
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ECHO OF SPECIMEN INPUT DATA, IN ASCENDING ORDER OF FRACTURE STRESS

.4000E-01 = QUTER LOAD SPAN OF FOUR-POINT BEND BAR

.2000E-01 = INNER LOAD SPAN

.3500E-02 = DEPTE OF SPECIMEN

.4500E-02 = WIDTHE OF SPECIMEN

79 = NUMBER OF SPZCIMENS IN BATCH 70.000 = TEMPERATURE OF BATCH

"S"URFACE OR "V"OLUME OR "U"NKNOWN FLAW ORIGIN AND RESPECTIVE FAILURE STRESS

VWV .4159E+03 .4584E+03 .5199E+03
VVV  .5272E+03 .5458E+03 .5606E+03
VvV .5725E+03 .5950E+03 .6035E+03
SSS .6045E+03 .6093E+03 .6115E+03
8SS .6144E+03 .6210E+03 -6215E+03
SSS  .6216E+03 .6222E+03 .6224F+03
SSS  .6251E+03 .6258E+03 .6311E+03
388 .6402E+03 .6426E+03 . 6490E+03
S8S .6501E+03 .6516E+03 .6551E+03
SSS  .6569E+03 .8570E+03 .6597E+03
8SS  .6597E+03 .6617E+03 .6621E+03
SSS  .B8621E+03 .6636E+03 .6641E+03
§SS .6645E+03 .66684E+03 .6688E+03
KRR .6708E+03 .6712E+03 .6717E+03
8SS .8721E+03 .6741E+03 .6768E+03
SSS .6771E+03 .6784E+03 .6799E+03
SSS  .6831E+03 .6837E+03 .6855E+03
SSS .6867E+03 .8870E+03 .6911E+03
SSS  .B940E+03 .6950E+03 .6998E+03
5SS . 7029E+03 .7029E+03 .7029E+03
S8S .7030E+03 .7045E+03 .7045E+03
SSS .7061E+03 .7101E+03 .7126E+03
888  .7158E+03 .7156E+03 .7158E+03
SSS  .7164E+03 .7165E+03 .7173E+03
SSS .7252E+03 .7254E+03 .7254E+03
SSS  .7260E+03 .7271E+03 .7287E+03
S .7323E+03

--- STEFANSKY OUTLIER TEST OF SPECIMEN FRACTURE STRESSES ---

RESULTS FROM THE STEFANSKY OUTLIER TEST FOR TEMP. = 70.0000
FAILURE STRESS

-4159E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 1%
SIGNIFICANCE LEVEL

-4584E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 1%
SIGNIFICANCE LEVEL

.5199E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 1%
SIGNIFICANCE LEVEL

.5272E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 5%
SIGNIFICANCE LEVEL

-5458E+03 DEVIATES FROM THE MAIN TREND OF THE DATA AT THE 10%
SIGNIFICANCE LEVEL
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DEVIATION FROM THE MAIN TREND OF THE DATA MAY
INDICATE BAD VALUES. MULTIPLE DEVIATIONS FROM THE SAME
REGION OF THE DISTRIBUTION INDICATE TEBAT EITHER A CONCURRENT
OR A PARTIALLY CONCURRENT FLAW POPULATION HAS BEEN DETECTED
(NOTE THAT A CONCURRENT FLAW POPULATION MAY BE PRESENT BUT NOT
BE DETECTED BY THE OUTLIER TEST). DEVIATIONS OCCURRING
IN THE SAME REGION OF THE DISTRIBUTION WITH ALL THREE
SIGNIFICANCE LEVELS (1%, 5% AND 10%) PRESENT INDICATE A
CONCURRENT FLAW PCPULATION. DEVIATIONS SHOULD BE EXAMINED AND
TREATED ACCORDINGLY (I.E. IGNORE, CENSOR, ADJUST OR ELIMINATE
STRESS). JUDGEMENT OF ACTION TAKEN CAN BE DETERMINED FROM THE
GOODNESS-0OF-FIT TESTS.
THE OUTLIER TEST IS NO SUBSTITUTE FOR GRAPHICAL EXAMINATION!!!

-- TEMP. DEP. WEIBULL MODULUS AND CHARACTERISTIC STRENGTH WITH 90% --
CONFIDENCE BOUNDS DETERMINED BY MAXTMUM LIKELIHOOD ANALYSIS

NOTE: 90% CONFIDENCE BOUNDS ON PARAMETERS DETERMINED FROM COMPETING FAILURE
MODES (CENSORED DATA) ARE APPROXIMATE.
FOR CENSORED DATA THE UNBIASED VALUE OF THE PARAMETER "M" IS NOT
GIVEN.
FOR SAMPLE SIZES LESS THAN 4, CONFIDENCE LIMITS ARE NOT GIVEN.

TEMP . M BIASED M UNBIASED UP M LOW M
CHAR. STR. UP C.S. LOW C.S. MEAN STD. DEV.
VOLUME 70.0000 .4130E+01 .5666E+01  .2179E+01

.1128E+04 .1342E+04  .9542F+03 .1024E+04  .2791E+03
SURFACE 70.0000 .2281E+02 .2619E+02  .1920E+02

.6917E+03 .6981E+03  .6853E+03 .6755E+03  .3684E+02

STATISTICS FROM THE GOODNESS-OF-FIT TESTS FOR TEMP. = 70.0000

KOLMOGOROV-SMIRNOV TEST
DRDER FRAC. STR. WEIB. PROB. OF FAIL. D+ FACTOR D- FACTOR SIGNIF. LEVEL

1 .4159E+03 .0161 -.0035 .0161 99.0000
2 .4584E+03 .0240 .0013 .0114 99.0000
3 .5199E+03 .0414 -.0034 .0161 99.0000
4 .5272E+03 .0443 .0064 .0063 98.0000
5 .5458E+03 .0529 .0104 .0023 99.0000
6 .5606E+03 .0620 .0140 -.0013 99.0000
7 ,5725E+03 .0714 .0172 -.0045 99.0000
8 .5950E+03 .0983 .0029 .0087 99.0000
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.6035E+03
.6045E+03
.6093E+03
.6115E+03
.6144E+03
.6210E+03
.6215E+03
.6218E+03
.6222E+03
.6224E+03
.6251E+03
.6258E+03
.6311E+03
.8402E+03
.6426E+03
.6490E+03
.6501E+03
.6516E+03
.6551E+03
.6569E+03
.6570E+03
.6597E+03
.6597E+03
.6617E+03
.6621E+03
.6621E+03
.6636E+03
.6641E+03
.6645E+03
.6664E+03
.6688E+03
.6708E+03
.6712E+03
.6717E+03
.6721E+03
.6741E+03
.6768E+03
.6771E+03
.6784E+03
.6799E+03
.6831E+03
.6837E+03
.6855E+03
.6867E+03
.6870E+03
.6911E+03
.6940E+03
.6950E+03
.6998E+03
.7029E+03
.7029E+03
.7029E+03
.7030E+03
.7045E+03
. 7045E+03
.7061E+03
.7101E+03
.7126E+03
.7156E+03
.7156E+03

.1130
1151
.1254
.1305
.1379
.1567
.1581
.1585
.1603
.1610
.1704
L1726
.1830
.2346
.2476
.2853
.2924
.3020
.3262
.3399
. 3407
.3616
.3616
.3773
.3804
.3811
.3935
.3980
.4015
.4182
.4388
.4580
.4619
.4674
.4709
.4909
.5182
.5207
.5338
. 5465
.5842
.5909
.6100
.6237
.6264
.6712
.7027
.7135
.7635
.7946
.7946
.7950
.7955
.8099
.8105
.8247
.8598
.8801
.9022
.9022

.0009

©.0114

1

.0139
.0214
.0267
.0205
.0317
.0440
.0549
.0668
.0701
.0805
.0728
.0439
.0435
.0185
.0241
.0271
.0156
.0146
.0264
.0181
.0308
L0277
.0374
.0493
.0496
.0577
.0669
.0628
.0538
.0484
.0571
.0643
.0734
.0661
.05615
.0616
.0611
.0581
.0360
.0420
.0358
.0345
.0445
.0124
.0065
.0046
.0419
.0604
.0478
.0355
.0233
.0251
.0130
.0146
.0370
.0447
.0541
.0414
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.0118
.0012
.0012
.0088
.0140
.0079
.0191
.0313
.0422
.05641
.0575
.0879
.0602
.0312
.0309
.0058
.0114
.0145
.0030
.0019
.0137
.0055
.0181
.0151
.0247
.0366
.0369
.0450
.0542
.0502
.0412
.0357
.0445
.0516
.0607
.05634
.0388
.0489
.0484
.0454
.0234
.0283
.022¢9
.0219
.0318
.0003
.0192
.0173
.0546
.0731
.0604
.0482
.0380
.0378

.0257
.0272
.0486
.0674
.0667
.0541

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.1339
.2422
.1735
.5012
.6191
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.5201
.1358
.3909
.5998
.0000
.8855
.9719
.8750
.0606
.4919
.5627
.9632
L2717
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0000
.2613
.2561
.5064
.0000
.0000
.0000
.0000
.0000
.9973
.7363
.3420
.5075



69 .7158E+03
70 .7164E+03
71 .7165E+03
72 .7173E+03
73 .7252E+03
74 .7254E+03
75 .7254E+03
76 .7260E+03
77 .7271E+03
78 .7287E+03
79 .7323E+03

.8031
.80786
.9081
.9134
. 9548
.9560
.9560
.9581
.9624
.9680
.9786

-.0297
-.0215
-.0094
-.0020
-.0309
-.0193
-.0067
.003¢
.0123
.0193
.0214

.0424
.0341
.0220
.0146
.0435
.0320
.0193
.0087
.0003
-.0067
-.0088

KOLMOGOROV-SMIRNOV TEST YIELDS STATISTIC D = MAX (D+,D-) = .0805
WITH AN ASSOCTATED SIGNIFICANCE LEVEL OF 68.5%

ANDERSON-DARLING TEST YIELDS STATISTIC A++2 = .8725
WITH AN ASSOCIATED SIGNIFICANCE LEVEL OF 58.3%

99.0000
99.0000
99.0000
99.0000
99.0000
99.0000

99.0000
99.0000
99.0000
99.0000

KANOFSKY-SRINIVASAN 90% CONFIDENCE BANDS ABOUT THE WEIBULL DISTRIBUTION FOR

TEMP. = 70.0000

THE KANOFSKY-SRINIVASAN FACTOR FOR THIS DISTRIBUTION IS .0836

ORD.

© 00 3 O U 2D

FRAC. STR. WEIB. PROB. OF PAIL.

.4159E+03
.4584E+03
.5199E+03
.5272E+03
.5458E+03
.5606E+03
.5725E+03
.5950E+03
.6035E+03
.6045E+03
.6093E+03
.6115E+03
.6144E+03
.6210E+03
.6215E+03
.6216E+03
.6222E+03
.6224E+03
.6251E+03
.6258E+03
.6311E+03
.6402E+03
.6426E+03

.6480E+03
.6501F+03
.8516E+03
.6551E+03
.6569E+03
.6570E+03

.0161
.0240
.0414
.0443
.0529
.0620
.0714
.0983
.1130
.1151
.1254
.1305
.1379
.1567
.1581
.1585
.1603
.1610
.1704
.1726
.1930
.2346
.2476
.2853
.2924
.3020
.3262
.3399
. 3407

SIZE OF 79

.0897
L1077
.1250
.1279
.1365
.1456
.1551
.1820
.1967
.1988
. 2090
.2141
.2215
.2403
.2418
.2422
. 2440
. 2447
.2540
.2563
.2766
.3182
.3313
. 3690
.3760
.3856
. 4098
.4235
.4243
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UPP.CONF.BAND MED. RANK

.0088
.0214
.0340
.0468
.0592
.0718
.0844
.0970
.1096
.1222
.1348
.1474
.1599
.1725
.1851
.1877
.2103
.2229
.2355
.2481
.2607
.2733
. 2859
.2985
.3111
.3237
.3363
. 3489
.3615

FOR A SAMPLE

LOW. CONF . BAND

.0000
.0000
.0000
.0000
.0000
.0000
.0000
.0147
.0294
.0315
.0418
.0469
.0542
.0731
.0745
.0749
.0767
L0774
.0867
.0890
.1094
.1510
.1640
.2017
.2088
.2183
.2425
.2562
.2571



.6597E+03
.6597E+03
.6617E+03
.6621E+03
.6621E+03
.6636E+03
.6641E+03
.6645E+03
.6664E+03
.6688E+03
.8708E+03
.86712E+03
.6717E+03
.6721E+03
.6741E+03
.86768E+03
.6771E+03
.6784E+03
.6799E+03
.6831E+03
.6837E+03
.6855E+03
.6867E+03
.6870E+03
.6911E+03
.6940E+03
.6950E+03
.6998E+03
.7029E+03
.7029E+03
.7028E+03
.7030E+03
.7045E+03
.7045E+03
.7061E+03
.7101E+03
.7126E+03
.7158E+03
.7156E+03
.7158E+03
.7164E+03
.7165E+03
.7173E+03
.7252E+03
.7254E+03
.7254E+03
.7260E+03
.7271E+03
.7287E+03
.7323E+03

.3616
.3616
.3773
.3804
.3811
.3835
.3980
.4015
.4182
.4398
.4580
.4619
.4674
.4709
.4909
.5182
.5207
.5338
.5495
.5842
. 5809
.6100
.6237
.6264
.6712
.7027
.7135
.7635
.7948
.79486
.7950
.7955
.8089
.8105
.8247
.8508
.8801
.9022
.9022
.9031
.9076
.9081
.9134
.9549
.9560
. 9560
.9581
.9624
.9680
.9786

1
1

1
1

—

. 44583
4453
.4609
.4640
.4647
.4771
.4816
.4851
.5018
.5234
.5416
.5455
.5510
. 5548
.5745
.6018
.6043
.6175
.6332
.6679
.8745
.6936
.7073
.7100
.7548
.7864
.7971
.8471
.8782
.8782
.8786
.8791
.8936
.8941
.9083
.9434
.9638
.9858
.9858
. 9867
.9912
.9917
.9970
.0000
.0000
.0000
.0000
.0000
.0000
.0000
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.3741
. 3866
.3992
.4118
.4244
.4370
. 4496
.4622
.4748
. 4874
. 5000
.5126
.5252
.5378
.5504
.5630
.5756
. 5882
.6008
.6134
.6259
.6385
.6511
.6637
.6763
.6889
.7015
7141
L7267
.7393
.7519
.7645
L7771
.7897
.8023
.8149
.8275
.8401
.8526
.8652
.8778
. 8904
.9030
.9156
.9282
. 9408
.9534
.9660
.9786
.9912

.2780
.2780
.2937
. 2967
.2975
.3098
.3144
.3178
.3345
.3562
.3743
. .3782
. 3837
.3873
.4073
.4345
.4371
.4502
.4659
. 5006
.5073
.5263
. 5401
.5428
.5875
.6191
.6298
.6798
.7110
.7110
.7114
L7119
.7263
L7269
.7411
.7761
.7965
.8185
.8185
.8195
.8239
.8245
. 8297
.8713
.8724
.8724
.8745
.8787
.8844
.8950
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* *
* SURFACE FLAW PARAMETER ANALYSIS *
* *
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«*xx  BATDORF MODEL --- CRACK ORIENTATION, CRACK SHAPE, s+«
AND FRACTURE CRITERION ARE CONSIDERED

--- TEMPERATURE DEFENDENT MATERIAL PARAMETERS FOR MATERIAL NUMBER 2
WEIBULL MODULUS (SHAPE PARAMETER), M (DIMENSIONLESS) ,
NORMALIZED BATDORF CRACK DENSITY COEFFICIENT, K (DIMENSIONLESS)
SCALE PARAMETER, SP (UNITS OF STRESS+AREA++(1/M))

TEMPERATURE M BIASED K SP
70.0000 .2281E+02 .6050E+01 .4613E+03

FRACTURE CRITERION = COPLANAR STRAIN ENERGY RELEASE RATE CRITERION
CRACK SHAPE = GRIFFITE CRACK
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7.0 CODE DESCRIPTION

Included on the distribution disk is a file called PCCARES.FOR which con-
tains the FORTRAN source code for the PC-CARES program. The code was written
with VAX and Microsoft extensions and was compiled and linked with Microsoft
. FORTRAN 5.0. The specific extensions used include the DO...ENDDO, the DO
WHILE...ENDDO, the ALLOCATE and DEALLOCATE routines and the EOF function.

Those wishing to modify the code and compile it with a compiler other than
Microsoft FORTRAN 5.0 may have to alter the sections of the code which utilize
these extensions. For the rest of this description, you may want to have a
copy of the code in front of you.

The ALLOCATE and DEALLOCATE routines are called from the following
PC-CARES routines: MAIN, MATL, CRACKV, CRACKS, and NORMAL. These calls should
be removed. However note how they are dimensioned in the ALLOCATE call so that
when you dimension them normally you will know to what size. You will have to
remove the ALLOCATABLE attribute from the DIMENSION statements as well, when
you insert the dimension numbers. For those arrays dimensioned using IMAXF and
IMAXT parameters, it is suggested that you simply dimension the arrays using
these labels and then set them to interger constants in the MAIN routine using
the FORTRAN PARAMETER statement. The default PC-CARES values are IMAXF = 150
and IMAXT = 10. In addition the READINI subroutine should be altered to remove
the assignment of the IMAXF and IMAXT parameters.

The EOF function is used in only two routines: the MAIN routine and the
READINI subroutine. The code can be modified to support whatever end of file
support your particular compiler supplies or the calls may simply be removed.
Note that the $END keywords normally stop the FORTRAN file reading, however, if
those keywords are missing then your code may attempt to read beyond the end of
file and abort abnormally generating a run-time error.

The DO...ENDDO and DO WHILE...ENDDO extensions are used throughout the
code, so if your compiler does not support these extensions then you will have
to change these structures to standard FORTRAN 77 by using the DO label...label
CONTINUE structure for the DO...END DO and by substituting an appropriately
placed IF and GOTO statement combination for the DO WHILE...ENDDO. An example
is given as follows:

Microsoft/VAX Extension Standard FORTRAN
DOI =1, 1000 DO 100 I =1, 1000
END DO 100  CONTINUE
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DO WHILE (CONDITION) 105~ IF (.NOT.(CONDITION)) GOTO 110

END DO GOTO 105
110  CONTINUE

Finally here is a list of descriptions of the routines used in PC-CARES.

The MAIN Routine

The PC-CARES main routine controls the logical flow of the PC-CARES pro-
gram as diagrammed in figure 2.1. Specifically the MAIN routine initializes
and dimensions the code's variables and arrays, after which it calls the
READINI subroutine to read the initialization file. If the initialization file
is not present then the initialization parameters are set to their default
values. the routine then allocates the array space needed by the program by
calling the Microsoft FORTRAN extension ALLOCATE, after which the PC-CARES
input file 1s read to obtain the Master Control Input and the Material Control
Input, echoing the input along the way by calling the subroutines PRINTA and
PRINTB. The routine continues by reading the fracture stress data and their
respective fracture origins if present. If the material parameters (specifi-
cally the shape and scale parameters) are supplied, they are read from the
input file. Finally the subroutine MATL is called which performs all the sta-
tistical analysis of the material. Following the MATL subroutine call, the
MAIN routine deallocates all of the allocated array space using the DEALLOCATE
command from Microsoft FORTRAN, closes all the files and exits.

In addition to the main program, the following subroutines appear in the
PC-CARES listings:

Subroutine ANGLE

This subroutine evaluates Q(I,oqp) or w(I,ocr) for volume and/or sur-
face flaw analysis, respectively, when the Batdorf method is selected. ANGLE
employs the quadratic solution procedure described in the appendix A.1 Volume
Flaw Reliability and the appendix A.2 Surface Flaw Reliability sections of
this manual. It determines the critical intervals where o > ocy for various
angles of o« and values of ocr about the unit sphere for volume flaw analy-
sis. For some specific stress states (op = 03), this evaluation is independent
of B. For surface flaw analysis these intervals are determined about the unit
circle. For volume flaw analysis the critical intervals correspond to the B
integral in equation (A.27). For surface flaw analysis the critical intervals
correspond to the integral in equation (A.55). Figure 2.2 shows the fracture
criteria and flaw geometries for which the coding has been developed. These
correspond to the effective stress equations (A.18), (A.19), (A.22), (A.23),
(A.25), (A.26), and (A.40) for volume flaw analysis and to equations (A.51) to
(A.54) for surface flaw analysis. The equations listed in tables A.I to A.III
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are used to find when og = ocp, and the procedure outlined in equations (A.36)
and (A.37) is used to find the intervals where og > ocr.

ANGLE is called from the MATBAT subroutine in order to aid in the calcu-
lation of the Batdorf crack density coefficient when IKBAT = 1 (in other words
when the user specifies the fracture criterion and the crack geometry and wants
shear sensitivity taken into account). Arguments R2 to R4 correspond to o),
o3, and (o2 - o3), divided by oy for the given stress state. Arguments P and
Q represent squared trigonometric functions of the angles « or {, whereas
argument H represents the values of o at locations of the Gaussian quadra-
ture points. These arguments are required within ANGLE to calculate intermedi-
ate vartables a1 to aj that are coefficients in the quadratic equation for
cos?a or cos2@ listed in tables A.I to A.III.

Subroutine ANGLES

This subroutine is used with the Batdorf volume flaw model to integrate
over the surface area of a quadrant of the unit sphere when the Shetty failure
criterion is used and Oepax > O1- ANGLES determines the intervals where

for constant ang?es of « about the unit sphere and stores the
l?mits of these intervals in the INTVAL array. The critical intervals corre-
spond to the integral of B described in equation (A.27). The limits of these
intervals are determined for each transformed Gaussian value of o¢r and a.
Each consecutive pair of integers in the third index of array INTVAL represents
an interval where o > ocr for an angle of a« denoted by the second index.
The first index corresponds to values of o, at locations of the Gaussian
quadrature points. The 1imits of integration stored in INTVAL are integers
representing 1° increments of angle B counted from -w/2 to =/2.

Function CONLIC

This function performs a table lookup of the factors for obtaining 90 per-
cent upper and lower confidence bounds of the MLE of og. These factors have
been taken from reference 10. They are obtained from a Monte-Carlo simulation
by using maximum likelihood analysis and uncensored data. The confidence bound
calculations are performed in subroutine MATL.

Function CONLIM

This function performs a table lookup of the factors for obtaining 90 per-
cent upper and lower confidence bounds of the MLE of m. These factors have
been taken from reference 10. They are obtained from a Monte-Carlo simulation
by using maximum likelihood analysis and uncensored data. The confidence bound
calculations are performed in subroutine MATL.

Subroutine CRACKS

Subroutine CRACKS is called from MATBAT and serves as an interface with
the SORMAL, SNGLES, SVALP3, and FINDP subroutines for the calculation of the
shear-sensitive (IKBAT = 1) normalized Batdorf surface crack density coeffi-

cient kgg for the Shetty criterion when %max > °1°
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Subroutine CRACKV -

Subroutine CRACKV is called from MATBAT and serves as an interface with
the NORMAL, ANGLES AND EVALP3 subroutines for the calculation of the shear-_
sensitive (IKBAT = 1) normalized Batdorf volume crack density coefficient Kkgy
for the Shetty criterion when aog .. > 0.

Subroutine EVALP3

Subroutine EVALP3 is used with the Batdorf model for volume flaw analysis

with the Shetty failure criterion when %emax > °1- It performs the integra-
tion
g
®max
/2 o]
v
J (J dB>S1n ao, . da docr (7.1
0 0

which is used in equations (A.27) and (A.38a). Legendre-Gauss quadrature is
used for the numerical integrations of da and doce. The stored values in
the INTVAL array previously calculated in the ANGLES subroutine are used to
perform the integration.

Function F

This function computes the polynomial approximation to the Gamma function
as per the "Handbook of Mathematical Functions."

Subroutine FINDP

Subroutine FINDP is used with the Batdorf model for surface flaw analysis
with the Shetty failure criterion when o .. > o7. It calculates Ppg as
defined by equation (A.55). The interval is determined from transforming val-
ues stored in the INTVAL array into real numbers. FINDP is called from the
SVALP3 subroutine.

Subroutine GAUSS

Subroutine GAUSS contains roots of the Legendre polynomials and the weight
factors for the Gauss quadrature. It is employed in the calculation of the
Batdorf crack density coefficient, when a closed-form solution is not avatl-
able. The number of Gauss points (NGP) is specified by the user in the program
input. Data are available in GAUSS for NGP = 2 to 10, 15, and 30 although only
15 and 30 are recommended. The weights and locations are contained in the W
and H arrays, respectively.

Subroutine LEASTZ2
This subroutine calculates the Weibull strength parameters m and C

(see eq. (A.59)) by using the least-squares analysis method for complete or
censored samples. The slope m and the intercept (in (C)) of the 1ine of
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best fit are obtained by solving two simultaneous equations (ref. 17). For
uncensored data, median rank regression analysis (eq. (A.61)) is used to
calculate the failure probability, Ps. However, in case of censored data, the
median rank regression analysis cannot be used directly because of the effect
of competing failure modes. Instead, the rank increment technique (eq.
(A.62)) is used to adjust rank values. These adjusted rank values are then
used with median rank regression analysis to calculate the failure
probability. The LEAST2 subroutine is called from the MATL subroutine.

Subroutine MATBAT

Subroutine MATBAT calculates the surface and/or volume scale parameters,
goS and ooy, and the normalized Batdorf crack density coefficients, kgg and
kgy, respectively. For a given material, parameters are found for each temper-
ature level that is input by the user. If mg and oo or my and ogy are
directly input, then only kgg or Kkgy 1is calculated, respectively. If
experimental fracture stresses are input for either four-point bend or uniaxial
tensile specimens, then all required parameters are calculated. The scale
parameter for volume flaws is calculated from equation (A.72), and for surface
flaws, equation (A.87) is used. The scale parameter is determined from the
specimen geometry and from the values of m and C estimated in the LEAST2
or MAXL subroutines. The coefficient kgg s calculated from equation (A.91)
or (A.94), and kgy 1s calculated from equation (A.78) or (A.84). The ANGLE
subroutine 1s called from MATBAT to evaluate w(I,ocp)/27 or Q(EL,ocp)/4w for
a uniaxial stress state to find kgg or kgy. If the Shetty criterion is
selected by the user with IKBAT = 1 option when Semax > °1° then the CRACKS

subroutine finds w(L,ocr)/27 and the CRACKV subroutine finds Q(I,oc0)/4n to
calculate kgg and kgy, respectively.

Subroutine MATL

Subroutine MATL controls the program logic flow for the determination of
the statistical material parameters and other useful statistical quantities as
shown in the flowchart of figure 2.1. Kolmogorov-Smirnov and Anderson-Darling
goodness-of-fit tests, Kanofsky-Srinivasan 90-percent confidence bands, Weibull
mean, Weibull variance, and 90-percent confidence bounds on the parameters are
all calculated in this subroutine. Ancillary subroutines to detect outliers
(OUTLIE), to perform least-squares (LEAST2) or maximum likelihood (MAXL) analy-
sis, to calculate Weibull scale parameters and the Batdorf crack density coef-
ficient (MATBAT), and to print out results of the analysis (PRINTP) are called
from MATL.

Subroutine MAXL

This subroutine determines the MLE's of the Weibull strength Parameters m
and og by using the maximum 1ikelihood method for both uncensored and cen-
sored data. The logarithm of the likelihood function is differentiated with
respect to m and C, and the resulting expressions are set equal to zero
(egs. (A.59), and (A.63) to (A.65)). The Newton-Raphson iterative technique is
used to obtain the parameter MLE's by solving these nonlinear equations. The
estimate for m for the first iteration is obtained from least-squares analy-
sis via the LEAST2 subroutine. If the convergence criterion it not met after
50 iterations, the maximum likelihood method is terminated, a warning message
is printed, and the results from the least-squares analysis are subsequently
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used in the program. If the fracture data are a complete sample, then the
unbiased estimate of the shape parameter is calculated with the factors stored
in the UNBIAS subroutine. The unbiased estimate is passed to the MATL subrou-
tine and is later printed out in the PRINTP subroutine. This parameter is not
employed in any subsequent calculations. Reference 17 contains a detailed
description of the method of calculation of these statistical quantities. The
MAXL subroutine is called from the MATL subroutine.

Subroutine NORMAL

This subroutine is called when the Batdorf volume flaw model is used with
the Shetty failure criterion and Temax > 1 NORMAL calculates the normalized

offective stress about the unit sphere as a function of the angles « and B,
and stores these values in the SEANGL array. The effective stress is deter-

mined for 1° increments of B and is stored in the second index of the array.
The first index denotes angles of « with values corresponding to the trans-
formed Gaussian points. The array values are normalized by the maximum effec-
tive stress og ., found for the stress state being evaluated. The effective

stress is calculated from equations (A.25) and (A.26).
Subroutine QUTLIE

In this subroutine, the available specimen fracture stress data at each
temperature level are examined for outliers or inconsistent data. At the start
of the subroutine, the sample mean and sample standard deviation are calcula-
ted. From these values, the normed residual for each specimen is obtained
(ref. 6). The normed residuals are normalized deviations of the data about the
sample mean. The Weibull distribution is not symmetrical about its mean, and
therefore this technique is only approximate. The absolute maximum of the
normed residual (MNR) statistic is compared with the critical value (CV) at 1-,
5-. and 10-percent significance levels. If the MNR statistic is smaller than
the three critical values, then no outliers are detected. However, if the MNR
is larger than at least one of the three critical values, the corresponding
data value with the MNR statistic is detected as an outlier with the appro-
priate significance level. The outlier test can only flag one point per trial
as an outlier. If an outlier is detected at the 10-percent or less signif-
icance level, it is removed from the sample and the remaining points are then
retested. This process is repeated until the sample is reduced such that no
more outliers are detected. Once all such points are detected, each of these
potential outliers is retested against the remaining "good" data, and those
points that maintain significance levels at or below 10 percent are flagged
with the appropriate significance level in the ISKIP array. The results of
the outlier test are output in the PRINTP subroutine via the MATL subroutine.

A discussion of the equations used with this method is given in reference 17.

Subroutine PRINTA

Subroutine PRINTA echoes the user input or default values from the Master
Control Input.

Subroutine PRINTB

Subroutine PRINTB echoes the user input or default values from the Mate-
rial Control Input.
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Subroutine PRINTP

This subroutine prints the values of all of the statistical quantities
calculated in MATL, OUTLIE, LEAST2, MAXL, and MATBAT subroutines at each dis-
crete temperature. A detailed description of the information printed can be
found in section 5.0 PC-CARES OUTPUT INFORMATION, of this manual.

Subroutine READINI

This routine reads the initialization file, PCCARES.INI, from the direc-
tory from which the PC-CARES program was executed and sets the INFILE, OUTFILE,
IMAXF, and IMAXT parameters according to commands in the initialization file,
if present. If the initialization file is not present then the default values
of these parameters are used.

Subroutine SNGLES

This subroutine is used with the Batdorf surface flaw model to integrate
over the contour of the unit circle when Shetty's failure c¢criterion is used
and o, > 91- SNGLES determines the intervals where og > o¢r about the

unit circle and stores the limits of these intervals as a function of o in
the INTVAL array. The critical intervals correspond to the integral described
by equation (A.55) to determine w(E,ocr). The limits of these intervals are
determined for each transformed Gaussian value of ocr. Each consecutive pair
of integers in the second index of array INTVAL represents an interval where
og > ocr for a value of oc, denoted by the first index. The limits of
integration stored in INTVAL are integers representing 1° increments of angle
counted from -w/2 to w/2.

Subroutine SORMAL

This subroutine is called when the Batdorf surface flaw model is used
with Shetty's failure criterion when g . > oy. SORMAL calculates the nor-

malized effective stress about the unit circle as a function of the angle «
and stores it in the SEANGL array. The effective stress is determined for 1°
increments of «. The array values are normalized by the maximum effective
stress  oe.. . found for the stress state being evaluated. The effective

stress is calculated from equations (A.52) to (A.54).
Subroutine SORTRA

This subroutine sorts the experimental fracture stresses at a given tem-
perature level into ascending order (IASEND = 1) along with the corresponding
fracture origins. It is invoked at the beginning of subroutine MATL. Array D
contains the fracture stresses to be sorted, and the parameter NSORT equals
the number of fracture stresses. The alphanumeric AINDEX array contains frac-
ture origins (S, V, or U) that correspond in position to the sorted stresses.

Subroutine SVALP3

Subroutine SVALP3 is used with the Batdorf model for surface flaw analysis

with Shetty's criterion when %emax > °1- It performs the integration
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which is used in equation (A.55). Gauss-Legendre quadrature is used for the
numerical integration of docr. The stored values in the INTVAL array, which
were previously calculated in the SNGLES subroutine, are used to perform the
integration. The FINDP subroutine is called from SVALP3 to perform the evalu-
ation of Ppg for each transformed Gaussian value of ocr.

Function UNBFTR

This function performs a table lookup of the unbiasing factors for the

estimated Weibull modulus m. These factors are a function of sample size and
are taken from reference 10. They are obtained from a Monte Carlo simulation
of unimodal fracture data by using maximum likelihood analysis. The factors
are based on the sample mean. The unbiased estimate of m is obtained by
multiplying the biased estimate of m by the unbiasing factor.
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cm

cv

D*,D-

EDF
FOx)
F(o)

FN(X)

Ge

APPENDIX
SYMBOL LIST
surface area
Anderson-Darling
Anderson-Darling goodness-of-fit test statistic

crack half length or penny-shaped crack radius or radius of semi-
circular surface crack

coefficients of quadratic equation used for calculating ¢35 where
j=1,2,3

risk of rupture in Weibull's cumulative failure distribution

modified Weibull parameter (C = 1/0g)™, or centigrade measure of
temperature

contour of a unit radius circle in two-dimensional principal stress
space

Shetty's constant in mixed-mode fracture criterion

centimeter

critical value

constants used in calculating Py for j =1,2,3
Kolmogorov-Smirnov goodness-of-fit test statistic

Kolmogorov-Smirnov goodness-of-fit test statistic defined as Dt
or D~ whichever is the largest

Young's modulus of elasticity

empirical distribution function

Fahrenheit

cumulative distribution function of a random variable
Weibull cumulative distribution of material strength
empirical distribution function

strain energy release rate, or crack extension force

critical value of strain energy release rate
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G1
GI
GIIr

Gmax

GC
GN
GPa

strain energy release rate for crack opening mode crack extension
strain energy release rate for crack sliding mode crack extension
strain energy release rate for crack tearing mode crack extension
maximum strain energy release rate

total strain energy release rate

Griffith crack (flattened elliptical cylinder)

Griffith notch

gigapascal

gram

total height of MOR bar with rectangular cross section

ranking of ordered fracture data in statistical analysis or any
counter

inch

opening mode stress intensity factor

critical opening mode stress intensity factor
sliding mode stress intensity factor

tearing mode stress intensity factor

Kir or KirII

Kanofsky-Srinivasan confidence band factors
Batdorf crack density coefficient or flaw distribution parameter
normalized Batdorf crack density coefficient
Kolmogorov-Smirnov

Weibull crack density coefficient, (1/0g)™M
polyaxial Weibull crack density coefficient
length between outer loads in four-point bending

length between symmetrically applied inner loads in four-point
bending

pound
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In
MLE
MNR
MOR
MOR,

MPa

mm

NGP

N(o)

N(Gcr)

P2

PIA

direction cosines of oblique plane normal in principal stress space
for the Cauchy infinitesimal tetrahedron

natural logarithm

maximum Jikelihood estimate

maximum normed residual

modulus of rupture or extreme fiber fracture stress

characteristic modulus of rupture or extreme fiber fracture stress
at which 63.2 percent of MOR bars will fail

megapascal

Weibull modulus or shape parameter; also Batdorf crack density
function exponent or flaw distribution parameter

millimeter
number of MOR specimens at a given temperature
number of Gauss base points used in numerical integration

Weibull crack density function or number of flaws per unit
volume/area with strength <o in uniaxial stress state

Batdorf crack density function which is a material property
independent of stress state and is the number of cracks per unit
volume/area with strength <oer

number of links in a structure

unit vector along oblique plane normal determined by angles «
and B in principal stress space

load applied to MOR bar specimen

cumulative failure probability

cumulative survival probability

penny-shaped crack (flattened oblate spheroid)

probability of existence in incremental volume or area of a crack
with strength between <ocy

probability of crack with strength <ocr being so oriented that
Oe 2 9cr

principle of independent action
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psi

T

SC

sec

X,y,2

4

@

pounds per square inch

number of remaining specimens in censored data analysis
inside radius

outside radius

semicircular crack

second

thickness

volume

weakest link theory

total width of MOR bar with rectangular cross section
ordered statistics

any variable

Cartesian coordinate directions

predicted failure probability at the fracture strength of the jth
specimen

angle between op and the maximum principal stress, o
(figs. A.1 and A.2); also significance level

defined as cos~ o, when o] > 02 = o3 for volume flaws and also
for surface flaws when o] > o2

angle between o projection and the intermediate principal
stress op in plane perpendicular to o7 (fig. A.1)

defined as root of cos~N®, when oy # o3
increment

probability of existence in incremental volume or area of a crack
with strength between o¢r and o¢r + Aocr

gamma function; tabulated in mathematical handbooks
material Poisson's ratio
usual product notation

3.1416
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I applied multidimensional stress state or summation notation

o applied stress distribution; also the traction or stress vector on
oblique plane of Cauchy infinitesimal tetrahedron

ger remote, macroscopic, uniaxial, normal fracture stress of a crack

o effective stress acting on a crack plane, oo = flop,t)

%emax maximum effective stress for the particular stress state

of extreme fiber fracture stress in MOR bar test

on normal stress acting on oblique plane whose normal is determined by
angles o and B (figs. A.1 and A.2))

on normal stress averaged about a unit radius sphere or unit radius
circle

99 Weibull scale parameter or normalizing stress

oy Weibull location parameter or threshold stress

o1,02,03 principal stresses (o7 > o2 > o3’

o) volume or area characteristic strength or characteristic modulus of
rupture, MOR,. This is the stress or extreme fiber stress at which
63.21 percent of the specimens will fail

T shear stress acting on oblique plane whose normal is determined by
angles o« and fp (figs. A.1 and A.2)»)

® defined as cos2f or cosa, depending on stress state, for which
og = ocr =0

Q solid angle in three-dimensional principal stress space for which
9¢ 2 O¢cr

w angle in two-dimensional principal stress space for which
Je 2 Ocr

Subscripts:

B Batdorf

cr critical

e effective

f failure, fracture

g gage
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II
IT1

v

W

crack opening mode
crack sliding mode
crack tearing mode
normal

polyaxial

surface

survival

volume

Weibull

Superscript:

~

estimated parameter
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APPENDIX
THEORY

The use of advanced ceramic materials in structural applications requiring
high component integrity has led to the development of a probabilistic design
methodology. This method combines three major elements: (1) linear elastic
fracture mechanics theory which relates the strength of ceramics to the size,
shape and orientation of critical flaws, (2) extreme value statistics to obtain
the characteristic flaw size distribution function, which is a material prop-
erty, and (3) material microstructure. Inherent to this design procedure is
that the requirement of total safety must be relaxed and an acceptable failure
probability must be specified.

The statistical nature of fracture in engineering materials can be viewed
from two distinct models (ref. 18). The first was presented by Weibull and
used the "weakest link" theory as originally proposed by Pierce (ref. 19). The
second model was also analyzed by Pierce (ref. 19) and, in addition, by Daniels
(ref. 20) and is referred to as the "bundle" or "parallel" model. In this
model, a structure is viewed as a bundle of parallel fibers. Each fiber will
support a load less than its breaking strength indefinitely but will break
immediately under any load equal to or greater than its breaking strength.

When a fiber fractures, a redistribution of load occurs and the structure may
survive. Failure occurs when all of the fibers have fractured. The weakest
link model assumes that the structure is analogous to a chain with "n" links.
Each 1ink may have a different 1imiting strength. When a load is applied to
the structure such that the weakest link fails, then the structure fails.
Observations show that advanced monolithic ceramics closely follow the weakest
link hypothesis. A component fails when an equivalent stress at a flaw
reaches a critical value which depends on a fracture mechanics criterion,
crack configuration, crack orientation, and the crack density function of the
material. 1In comparison with the bundle model, WLT is in most cases more
conservative.

One of the important features of WLT is that it predicts a size effect.
The number and severity of flaws present in a structure depends on the mate-
rial volume and surface area. The largest flaw in a big specimen is expected
to be more severe than the worst flaw in a smaller specimen. Another conse-
quence of KHLT is that component failure may not be initiated at the point of
highest nominal stress (ref. 21), as would be true for ductile materials. A
large flaw may be located in a region far removed from the most highly stressed
zone. Therefore, the complete stress solution of the component must be
obtained.

Classical WLT does not predict behavior in a multiaxial stress state. A
number of concepts such as the PIA, Weibull's normal stress averaging method,
and Batdorf's model have been applied to account for polyaxial stress state
response. Batdorf's model (ref. 22) assumes the following: (1) microcracks in
the material are the cause of fracture, (2) cracks do not interact, (3) each
crack has a critical stress, ocy, which is defined as the stress normal to the
crack plane which will cause fracture, and (4) fracture occurs under combined
stresses when an effective stress, og, acting on the crack is equal to ocr.
For an assumed crack shape o may be obtained through the application of a
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fracture criterion. These concepts are applied in the PC-CARES code to obtain
the normalized Batdorf crack density coefficient.

A.1 Volume Flaw Reliability

Consider a stressed component containing many flaws and assume that
failure is due to any number of independent and mutually exclusive mechanisms
(links). Each link involves an infinitesimal probability of failure APsy.
Discretize the component into n incremental links. The probability of sur-
vival, Pgy, of the ifh Tink is

(P, =1 - (AP

e )1 (A1)

fv

where the subscript V denotes volume dependent terms. The resultant proba-
bility of survival of the whole structure is the product of the individual
probabilities of survival

n n

n n
Psv = H Poydy = ﬂ [‘ - <APf-'v)i] ;H e"p[‘(Apfv)i] = exp|- D (P,
sl

i=1 i=1 i=1
(A.2)

Assume the existence of a power function Ny(o), referred to as the crack
density function, representing the number of flaws per unit volume having a
strength equal to or less than o. In uniform tension of magnitude o, the
probability of failure of the ith 1ink, represented the incremental volume
AVy, s

(AP

= N (o)AV1 (A.3)

el = Ny

and substituting into equation (A.2), the resultant probability of survival is

PSv = exp[-NV(c)V] (A.4)
and the probability of failure is
va =1 - exp[-NV(o)V] (A.5)

where V is the total volume. If the stress is a function of location then

va =1 - exp[—JV Nv(o)dv] =1 - exp[—BV] (A.6)

A term called the "risk of rupture" by Weibull and denoted by the symbol
By is commonly used in reliability analysis. Equations similar to (A.5) and
(A.6) are applicable to surface distributed flaws where surface area replaces
volume and the flaw density function is surface area dependent.
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Weibull introduced a three-parameter power function for the crack density

function Ny(o),
m
o -0 V
N (o) = (——“V) (A.7)

where oyy s the threshold stress (location parameter), usually taken as
zero for ceramics. The location parameter is the value of applied stress
below which the failure probability is zero. When the location parameter fis
zero, the two-parameter Weibull model is obtained. The scale parameter, ooV
then corresponds to the stress level where 63.2 percent of specimens with
unit volumes would fracture. The scale parameter has dimensions of

stress x(volume)] mv, my 1is the shape parameter (Weibull modulus) which
measures the degree of strength variability. my s a dimensionless
quantity. As my increases, the dispersion is reduced. For large values of
my (my > 40), such as those obtained for ductile metals, the magnitude of the
scale parameter corresponds to the material ultimate strength. These three
statistical parameters are material properties, which are temperature and
processing dependent.

Three-parameter behavior is rarely observed in as-processed monolithic
ceramics and statistical estimation of the three material parameters is very
involved. Therefore, the PC-CARES program uses the two-parameter model. The
subsequent reliability predictions are more conservative than for the three-
parameter model since we have taken the minimum strength of the material as
zero.

The two-parameter crack density function is expressed as

m

( o ) v mV
N, (o) = | — =k o (A.8)
V SRy wV

and substituting equation (A.8) into equation (A.6), the failure probability
becomes

My
va =1 - exp -kwv o dv (A.9)
v

where kyy = cov"mV is the unfaxial Weibull crack density coefficient. Var-
tous methods have been developed to calculate ooy and my for a given
material using fracture strength data from simple uniaxial specimen tests
(ref. 17).

The two most common techniques for using uniaxial data to calculate Pry
In polyaxial stress states are the PIA (refs. 23 and 24) and the Weibull normal
tensile stress averaging method (refs. 25 and 26). In the PIA model, the prin-
cipal stresses o7 > op > 03 are assumed to act independently. If all princi-
pal stresses are tensile, the probability of failure according to this approach
is
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m m m
Vv Vv v
va =1 - exp -va [ (c] + 0y + 0g )dV (A.10)
Vv

Compressive principal stresses are assumed not to contribute to the failure
probability. It has been shown that this equation yields nonconservative esti-
mates of Pgy 1in comparison with the Weibull normal stress method (ref. 27).

The failure probability using the Weibull normal tensile stress averaging
method, which has been described through an integral formulation (ref. 28), can
be calculated from

where

The area integration is performed in principal stress space over the surface,
A, of a sphere of unit radius for regions where op, the projected normal
stress on the surface, is tensile. The polyaxial Weibull crack density coeffi-
cient is kypy- The relationship between Kypy and kyy s found by equating
the failure probability for uniaxial loading go that obtained for the polyaxial
stress state when the latter is reduced to a uniaxial condition. The result is
k = (2m

+ l)kw (A1)

wpV v v

Batdorf and Crose (ref. 22) proposed a statistical theory in which atten-
tion is focused on cracks and their failure under stress. Flaws are taken to
be uniformly distributed and randomly oriented in the material bulk. Fracture
is assumed to depend only on the tensile stress acting normal to the crack
plane, hence, shear-insensitivity is inherent to the model. Subsequently,
Batdorf and Heinisch (ref. 29) included the detrimental effects of shear trac-
tion on a flaw plane. Their method applies fracture mechanics concepts by com-
bining a crack geometry and a mixed-mode fracture ¢criterion to describe the
condition for crack growth. Adopting this approach, the PC-CARES program con-
tains several fracture criteria and flaw shapes for volume and surface analyses
(fig. 2.2).

Consider a small uniformly stressed material element of volume AV. The
incremental probability of failure under the applied state of stress, I, can be
written as the product of two probabilities,

APfV(Z,ocr,AV) = AP]VPZV (A.13)
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where APjy 1is the probability of existence in AV of a crack having a criti-
cal stress between ocr and ocy + docy. As previously noted, critical stress
is defined as the remote, uniaxial, fracture strength of a given crack in

mode I loading. Pjyy denotes the probability that a crack of critical stress
ocr will be oriented in a direction such that an effective stress, oo (func-
tion of fracture criterion, stress state, and crack configuration) satisfies
the condition o > ocr. The effective stress is defined as the equivalent
mode I stress a flaw would experience when subjected to a multiaxial stress
state which results in modes I, II, and III crack surface displacements.

Crack dimensions are related to crack strength, and crack size is never
explicitly used in statistical fracture theories. Batdorf and Crose (ref. 22)
describe APyy as

dN, (o )
V "cr
AP]V = AV 4o dcrcr (A.14)
cr
and Ppy is expressed as

Q(L,0_ )

cr
sz = i (A.15)

Where Ny(ocy) is the Batdorf crack density function. Q(I,ocy) is the area of
the solid angle projected on the unit radius sphere in principal stress space
containing all the crack orientations for which og > ocr. The constant 4
is the surface area of a unit radius sphere and corresponds to a solid angle
containing all possible flaw orientations.

The probability of survival in a volume element AV; is
oemax
Q(E, o r) dNV(Ocr)

o
do (A.16a)
41 doCr cr

) = exp -AVi

where oo . s the maximum effective stress a randomly oriented flaw could
experience from the given stress state. Hence, the component failure proba-
bility is

g
e

max
HEoer) MyCoey) do__|dv (A.16b)
4 dcCr cr :

(va) =1 - exp<-

v

The Batdorf crack density function Ny(o..) is a material property,
independent of stress state, and is usua%ly approximated by a power function
(ref. 29). This leads to the Batdorf crack density function of the form

My
Ny€ocy) = Kgyoer
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where the material Batdorf crack density coefficient kgy and Weibull modulus
my can be evaluated from experimental fracture data. Batdorf and Crose

(ref. 22) initially proposed a Taylor series expansion for NyCocp?, but this
method has computational difficulties. A more convenient integral equation
approach was recently formulated and extended to the use of data from four-
point MOR bar tests (ref. 30). Note that Ny(ocp) has units of inverse volume.

Although the Weibull (eq. (A.8)) and Batdorf (eq. (A.17)) crack density
functions are similar in form, they are not the same. The Weibull function
simply depends on the applied stress, o, and is the only term other than the
volume necessary to calculate Pgy. The Batdorf function depends on the mode I
strength of the crack, ocp, which is probabilistic and must be integrated over
a range of values for a given stress state. Furthermore, to obtain Pgy, a
crack orientation function, Ppy, must be considered in addition to the density
Function and the volume. Finally, the Batdorf coefficient, kgy, cannot be cal-
culated from uniaxial data until a fracture criterion and crack shape are
chosen, in contrast to the Weibull coefficient, kyy, which depends only on the
data itself.

Assuming a shear-insensitive condition, fracture occurs when
on = 0 > ocr, Where op is the normal tensile stress on the flaw plane.
However, for a flat crack it is known from fracture mechanics analysis that a
shear stress, t, applied parallel to the crack plane (mode 1T or IID), also
contributes to fracture. Therefore, for polyaxial stress states expressing
the effective stress, og, as a function of both on and < is more accurate
than assuming shear-insensitivity. Batdorf and Heinisch (ref. 29) give effec-
tive stress expressions for two flaw shapes using both Griffith's maximum ten-
sile stress criterion and Griffith's critical coplanar strain energy release
rate (Gr) criterion. Arranged in order of increasing shear-sensitivity, for
the maximum tensile stress criterion the effective stress equations are

o = % (on . oﬁ N 12) (Griffith flaw) (A.18)

and

2
! 2
% = 39% +“‘/;n + [?T_:£57§37] (Penny-shaped flaw) (A.19)

where v 1is Poisson's ratio.
The total coplanar strain energy release rate criterion is calculated from

+ G (A.20)

G 111

=G, + G

T I 11
where G 1is the energy release rate for various crack extension modes. In
terms of stress intensity factors, the effective stress equation can be derived
from (plane strain condition assumed) enforcing the condition Gt = Gc, where

Gc s the critical strain energy release rate. Thus,

K
I 7 -

2
2 I
IC

2
I

Ki~r = K7 + K (A.21)

76



For a Griffith crack, assuT}Qg that modes I .and II dominate the response
with Ky = ops/ma and Ky = t+/ma, where 2a 1is the crack length, we have
from equation (A.21)

o = 02 + 12 ' (A.22)

For a penny-shaped crack at the critical_point on the crack periphery, we have
K = 2onva/r and Kpp = [41/(2 - v)14a/w (ref. 31) where a now is the
crack radius. The resulting effective stress equation is

1/2
Y P———l————]z} (A.23)
% T 1% * [0 -0.5v .

The equations given by Batdorf and Heinisch consider only self-similar
(coplanar) crack extension. However, a flaw experiencing a multiaxial stress
state usually undergoes crack propagation initiated at some angle to the flaw
plane (noncoplanar crack growth). Shetty (ref. 14) performed experiments on
polycrystalline ceramics and glass considering crack propagation as a function
of an applied far field multiaxial stress state. He modified an equation pro-
posed by Palaniswamy and Knauss (ref. 13) to empirically fit experimental data.
This multimodal interaction equation takes the form

2
(K
Kie "\

= | (A.24)

IC

where Kg is either Kiy or Kypr, whichever is dominant, and C is a
constant adjusted to best fit the data. Shetty (ref. 14) found a range of val-
ues of 0.80 < C ¢ 2.0 for the materials he tested which contained large

induced flaws. As C increases, the response becomes progressively more
shear-insensitive.

Using this relationship with assumed modes I and II dominance for the
Griffith crack yields

3
o = % o +alot 4 (g;) (A.25)

and for a penny-shaped crack, we get
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7
op = 3 |on + /%0 + (;——31———) (A.26)
G2 - W

To determine a component probability of failure from equation (A.16), Poy
has to be evaluated for each elemental volume A4Vjy, within which a uniform
stress state I(oy,0p,03) is assumed. The solid angle Q(L,ocy) depends on
the selected fracture criterion, crack configuration and on the applied stress
state. For multiaxial stress states, with few exceptions, Q(L,ocr) must be
determined numerically. For a sphere of unit radius (fig. A.1), an elemental
surface area of the sphere is dA = sin a dB da. Project onto the spherical
surface the equivalent stress op(I,a,B). The solid angle Q(L,ocy) is the
area of the sphere containing all the projected equivalent stresses where
og > ocp. Noting the symmetry of og, and addressing the first octant of the
unit sphere, then

Q(L,0,) = 4P,y = 8 j;/z (f 4B)sin o da (A.27)

where B is evaluated between O and w/2.

To obtain the limits of integration, 8; and Ry, for the interval where
oe > ocr. the principal stresses must first be transformed to normal and shear
stresses. Selecting an arbitrary plane and imposing equilibrium of forces
(fig. A.1), the following equations are obtained:

0% = ofaz ' ogm2 . cgnz (A.28)
oy = O]QZ + 02m2 + c3n2 (A.29)
2ol cﬁ (A.30)

where o is the total traction vector acting on the crack plane and the direc-
tion cosines &, m, and n are given in figure A.1 in terms of trigonometric
functions of o« and B. From the selected fracture criterion and crack con-
figuration o 1s obtained as a function of I, a, and 8.

By defining ¢ = cos2p and enforcing the failure condition of og = ocr,
we obtain a quadratic equation in ¢ satisfying either

2 2 2
i - (cn + Dt ) -0 (A.31)

or
o
n 172 2
(ccr - E_) -3 (on + Dt ) =0 (A.32)
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where D 1is some constant defined by the specific fracture criterion and
crack geometry. Equation (A.31) is used with the effective stress equa-
tions (A.22) and (A.23). Equation (A.32) is used when the effective stress
equations (A.18), (A.19), (A.25), and (A.26) are selected. The quadratic
equation takes the form

2

a]¢ + a2¢ + a3 =0 (A.33)

and the roots ¢] and ¢2 are

2
-a =Va - 4a.a
2 2 13 (A.38)

where &) < ®p. The expressions for coefficients aj to a3 are given in
tables A.I and A.II. The values for (8 are then found as

~ -1 N
B] = COS ‘/¢2 0« ¢, < 1
B, =0 ¢ <0 or & >1 or ¢, isa complex number
f (A.35)

- -1
B, = cos \ﬁb] 0<o <1

m
EZ =5 ¢] <0 or ¢] >1 or ¢1 is a complex number‘)

After obtaining By and f; for a given stress state I, «, and ocrs
care must be taken in evaluating the integral. The solution of the integral

in equation (A.27) is either

El /2
J dB + J B = ﬁ] - Ez + g— (A.36)
0 Bz
or
BZ )
J g = B, - E, (A.37)

The correct solution is determined by checking if op - ocr 2 0 at some
angle B between 0 and w/2. In the PC-CARES program exfensive logic has been
devised to examine all possible permutations the roots may have, including
fmaginary roots.
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An alternative approach to calculate Ppy 1is to increment the angles «
and B over the surface of a unit radius sphere. By symmetry only one octant
needs to be considered. At each discrete point on the surface, the effective
stress is evaluated and the associated area element is summed depending on
whether og > ocp. This procedure is computationally intensive, and, whenever

possible PC-CARES employs the more efficient approach described previously.

For a given stress state and value of ocris & is varied from 0 to w/2
and QI,ocry) 1s evaluated. The values of ocpy vary from 0 to ogp... for

the Gauss-Legendre integration used by PC-CARES. The probability of survival
in volume AVy 1s obtained by substituting equation (A.17) into equation

(A.16a) to get

(Psv)1 = exp < 'AvikaBv —r  %r docr (A.38a)

and the component failure probability is

( . )
e
max AL,0.) m-1 \
(Pey) = 1 - exp< -mkgy —— o, dog |dv (A.38b)
0
. v b

Consider the simple stress state oy > 02 = 03. For this case o and
Q(E,0cr) are independent of B and equation (A.27) reduces to

w/2
AZ.o. ) =8 f B lsin o da = 4 f sin o da (A.39)
cr 0

where o« 1s integrated between 0 and w/2 in a manner similar to the integra-
tion of B in equation (A.27). The quadratic equation (A.33) is reformulated
as a function of «, where now ¢ = cosa. Table A.II(a) contains the coeffi-
cients a; to a3 for calculating &; and thence Q(I,ocy) for various frac-
ture criteria and crack shapes for this stress state. The logic for evalua-
ting the a 1integral is the same as that for the B integral, as described
in equations (A.35) to (A.37). With the possible exception of the Shetty cri-
terion or when o3 < 0, the quadratic equation can have only one root between
0 and 1 and Q(I,ocy) is simply 4w(1 - cos a) where « corresponds to the
single root. If both roots lie outside the range O to 1, then a sample point
is required to determine whether Q(I,o¢p) = 0 or Q(IL,ocy) = 4w. Additional
equations for calculating Ppy are also listed in table A.II(b) for special
stress states, such as the uniaxial, equibiaxial and equitriaxial loading

conditions.
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For certain stress states and crack plane orientations, the normal stress
on the crack plane can be compressive. MWhen this situation occurs in the
PC-CARES program the normal stress is set to zero and only the shear stress is
assumed to contribute to crack growth. This is generally a conservative
assumption since friction between the crack faces is ignored. If friction were
considered, the effective applied shear would be reduced.

For most fracture criteria, %max = O1» that is the maximum effective
stress is equal to the maximum tensile principal stress. For_noncoplanar crack
extension using equations (A.25) and (A.26), if 1/C and 2/C(2 - v) are <1.0,
respectively, then %emax = °1- If these terms are greater than 1, then
%max > 1 is possible. Also %emax > 1 15 possible when o3 < 0. For these

conditions, the values of [ of equation (A.35) are found by a surface element
sampling scheme.

For the special case of shear insensitivity, the projected equivalent
stress on a unit radius sphere is equal to the normal stress, that is,
og = op. Substituting for op, we obtain

o oy + (c] - 03)C052a + (02 - 03)COSZB Sinza (A.40)

e

The value of @ satisfying ge - ocr = 0 is obtained by defining
¢ = cos?B and calculating the coefficients aj for equation (A.33). For
this shear-insensitive case, we get

a] =0
a, = (o, - 0.)5in’ (A.41)
2 2 3 )
and
a, = (o, - 0.0c05%a + 0. - o (A.42)
3 ] 3 3 cr :
We can now solve for ¢ to obtain
-a3 Ocp = gy - (o] - 03)C052a
¢=T= 2 (A.43)
2 (02 - c3>sin a

It is obvious that only one value of ¢ satisfies equation (A.43), from which
the Timits of integration become
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By =0 )
B, = cos™! B if 0¢® <)
i > (A.48)
BZ =0 if 6> 1
By =7 if ¢¢0
y

and equation (A.37) is used for all cases.

A.2 Surface Flaw Reliability

For surface flaw analysis (ref. 2), many of the equations from section
A.1 Volume Flaw Reliability remain the same, except that the statistical mate-
rial parameters are a function of surface area instead of volume and the equiv-
alent stress projections are onto the contour of a circle of unit radius rather
than onto the surface of a unit radius sphere. The cracks are assumed to be
randomly oriented in the plane of the external boundary with their planes nor-
mal to the surface.

For surface flaw induced failure in ceramic structures the probability of
failure for the two-parameter Weibull distribution, which is analogous in form
to equation (A.9) is

Ms
PFS =1 - exp —kwS o~ dA (A.45)

A

where Kkyg = (1/cos)m5, is the Weibull surface crack density coefficient. The
subscript” S denotes the terms that are surface area de??ndent. Here oog 1S
the surface scale parameter with units of stress x(area) MS and A is the
stressed surface area. For biaxial stress states, the Weibull distribution in
combination with the PIA hypothesis yields

s s
PfS =1 - exp —kws 0" + 0y dA (A.46)
A

where o] and oy are the principal tensile in-plane stresses acting on the
surface of the structure. The failure probability using the Weibull normal
stress averaging method can be calculated from

m
-5
PfS =1 - exp 'kpr j o, dA (A.47)
A

82



where

m
m f o S dc

s e

n f dc

c
Here kwps 1s the polyaxial Weibull crack density coefficient for surface
flaws. ?he line integration is performed over the contour, ¢, of a unit radius
circle where the projected normal stress, on, s tensile. The relationship of
kwps to kys is obtained by carrying out the integration in equation (A.47)

for a uniaxial stress and equating the resultant failure probability to that of
equation (A.45) (ref. 17). This results in

msr(ms)\/;
S 2

where T 1{s the gamma function. Equation (A.47) is the shear-insensitive case
of the more general Batdorf polyaxial model.

For mixed-mode fracture due to surface flaws the Batdorf polyaxial failure
probability equation (analogous to eq. (A.16b)) is

%a

max
Pee = 1 - exp|- o o¢) Mslog,) do__ dA (A.49)
fS 2 dccr cr '

where

dNS(ocr) do
docr cr

AP. . = AA

1S

and

w(E,ocr)

Pos = 7w

For randomly oriented cracks w(I,ocr) 1s the total arc length on a unit radius
circle in principal stress space on which the projection of the equivalent
stress satisfies og > oy and 2r 1is the total arc length of the circle.

The same as for volume flaws, the Batdorf surface crack density function is
approximated by the power function,
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Ms
Ns(ocr) = kBSOCF (A.50)

where kgg is the Batdorf surface crack density coefficient.

Fracture occurs when the equivalent stress g > ocp. For the shear-
insensitive case fracture depends only on the value of the normal tensile
stress such that oe = op. For shear-sensitive cracks and colinear crack
extension (Gr criterion), assuming a Griffith crack with Ky = onvma and
Kip = tv/ma we obtain as before

o =gfc + 1 (A.51a)

while for a Griffith notch subjected to plane strain conditions with
K[ = 1.12150q~/ma and Kypp = t~/ma (ref. 31) we get

2 0.795] 2
gy = ‘/;n t O 9" (A.51b)

Note that the equivalent stress for the Griffith crack is dependent on modes I
and II, while for the Griffith notch, the equivalent stress is dependent on
modes I and III (ref. 2).

For noncoplanar crack growth, from equation (A.24) the effective stress
equations for the Griffith crack and Griffith notch, respectively, are

1 2 T 2
o = 7% * 1 of + 4 —E— (A.52)

Q
[}

and

Q
[}
IR

) 2
o +%/0° + 3.1803 —— (A.53)
n n E

For a semicircular surface crack Kp = 1.3660pva, K1 = 1.241x+/a, and
Kiir = 0.133t/a (refs. 32 and 33). Since the contribution of KiiI is small
it is neglected, and thus, the effective stress for this case is

-1 2, 3.301 = ’ (A.58)
% =3|% *¥% * z '
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For the same stress state and identical C, the Griffith crack is the most
shear-sensitive, while the Griffith notch and the semi-circular crack give

almost identical predictions.

The solution procedure for w(I,oc) is similar to the methods outlined
In section A.1 Volume Flaw Reliability. The probability that the crack orien-
tation is such that og > ooy can be calculated from

w(l,o_ )
Pyg = —5 = 2 f da (A.55)

where over the unit radius circle, 0 ¢ aj < m/2. The limits of integration
a1 and ap are obtained through the enforcement of the failure condition

og = ocr. The required normal and shear stresses are calculated from force
equilibrium on a crack plane. As shown in figure A.2, the stress vector o,
the normal stress op and the shear stress =t can be expressed as

o* = (o} - o3)eos%a + of (A.56)
oy = (a] - cz)cosza + 9 (A.57)
12 = 02 - oﬁ = (c] - 02)2 C052a<1 - Cosza> (A.58)

Upon substitution of o,, t and satisfaction of o = ocr, equations (A.51)
to (A.54) are reduced to a quadratic expression of the same form as equa-

tion (A.33) with ¢ = cosa. However, since B = 0° (fig. A.1¢a)) in the

o] - o2 plane, the constants a1 to a3 are dependent only on the two prin-
cipal stresses, ocpr, and in some cases on Poisson's ratio. Using the solution
methods outlined in the previous section we obtain the roots of the quadratic
equation. These values are in table A.III along with the coefficients aj .
For cases where the roots, ¢y, of the quadratic equation are not between 0

and 1, the calculation of P2os in equation (A.55) follows the same logic as
has been given in equations (A.35) to (A.37), with a replacing f. Specific
examples for this situation have been given in reference 2. For the equibi-
axial surface stress state, we always have w/2w = 1 for gcr £ epayr Since

the in-plane shear stress is zero and hence og = o] for all values of « and
any effective stress equation.

When the normal stress is compressive (on < 0) it is equated to zero
and the shear stress alone contributes to crack growth. The maximum equiv-
alent stress Semax for most cases is equal to gy, the maximum principal

stress. However, for noncoplanar crack extension, using equation (A.24),

%emax s dependent on the value of C, and may exceed o1. Also when oy < O,
then %max > °1 is possible. Again a sampling scheme is used to evaluate
w(L,ocp) when this condition occurs.
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A.3 Estimation of Statistical Material Strength Parameters

Selected statistical theories and equations for parameter estimation are
explained in detail in reference 17. The following is a brief description of
these methods and how they are used in the PC-CARES code. Typically for brit-
tle materials, the Weibull parameters are determined from simple specimen geom-
etry and loading conditions, such as beams under flexure and either cylindrical
or flat specimens under uniform uniaxial tension. The flexural test failure
probability can be expressed in terms of the extreme fiber fracture stress, of,
or modulus of rupture, MOR, using the two-parameter Weibull form as

Pe= 1 - exp(-co$>

|- exp[-C(MOR)m]

m
|- exp[— (%93) } (A.59)
6

where m 1is the volume or area Weibull modulus, C is the modified Weibull
parameter (C = (1/09>™ and og 1is the volume or area specimen characteristic
strength or characteristic modulus of rupture, MORy. For uniform uniaxial ten-
sion tests of in equation (A.59) would just be replaced by oy. The Weibull
scale parameter, og, 4S defined in equations (A.7) and (A.45) for volume and
surface cracks, respectively, is determined from og, m, the specimen geometry,
and the loading configuration. The scale parameter, oo, is based on a unit
volume or area, whereas og includes the effects of the specimen dimensions.
The characteristic strength og is defined as the uniform stress or extreme

fiber stress at which the probability of failure is 0.632.

Before computing the estimates of the statistical material parameters, it
is essential to carefully examine the available specimen data to screen them
for outliers. Very often, a data set may contain one or more values which may
not belong to the overall population. The statistical procedures to detect the
outliers at different significance levels are explained in references 6 and 17.
The outlier test assumes that the data is normally distributed and from a com-
plete sample. Therefore, the application of this test to the Weibull distribu-
tion and censored statistics is only approximate.

Various methods are available to estimate the statistical material param-
eters from experimental data for the two-parameter Weibull distribution. The
success of the statistical approach depends upon how well the probability den-
sity function fits the data. Two popular techniques used to evaluate the
characteristic strength and shape parameter (og and m) are the least-squares
analysis and the maximum likelihood method. Least-squares analysis is a spe-
cial case of the maximum likelihood method where the error is normally
distributed and has a zero mean and constant variance. The least-squares
method is not suitable for calculating confidence intervals and unbiasing
factors, which quantify the statistical uncertainties in the available data.

Equation (A.59) can be linearized by taking the natural logarithm twice

yielding
L N N |
Qn[ﬁn(Ps)} = Qn[Qn(1 - Pf)] =on C + m2n o¢ (A.60)
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For the least-squares analysis, it is necessary to obtain the line of best fit
with slope m and an intercept b which, as seen in equation (A.60), is
equal to the natural log of C. The failure probability Pg is determined by
conducting fracture tests on N specimens. The fracture stresses are ranked
such that ofy] < ofp < . . . Cofj <. . . < ofy. For median rank regression
analysis, the probability of failure of a specimen with rank i s

i - 0.3
Pf(°f1) “N:04 (A.61)
By taking the partial derivative of the sum of the squared residuals with

respect to m and C, and by equating the derivates to zero, values of m
and C can be estimated.

With censored data, one cannot directly use the median rank regression
analysis as given in equation (A.61) because of the competing failure modes.
To take into account the influence of the suspended items, Johnson (ref. 9)
developed the rank increment technique. For this technique, all observed
fracture stresses are arranged in ascending order, and rank increment values
are calculated for each failure stress from the following equation:

(N + 1) - (previous adjusted rank) (A 62)
1 + (number of items beyond present suspended item) ‘

Rank increment =

In the PC-CARES program for volume flaw analysis, all fracture stresses desig-
nated as V's are considered as failure data: for surface flaw analysis, the
S's are considered as failure data. The new adjusted rank values are obtained
by adding the rank increment value to the previously adjusted rank. These
adjusted rank values and the median rank regression analysis (i.e., eq. (A.61))
are then used to calculate the failure probability Pe. Finally, the Weibull

parameters m and C are obtained.

Since the distribution of errors from the data is not normal, the maximum
likelihood method is often preferred in Weibull analysis. This method has
certain inherent properties. The likelihood equation from which the maximum
likelihood estimates (MLE's) are obtained will have a unique solution. In
addition, as the sample size increases the solution converges to the true val-
ues of the parameters. Another feature of the maximum likelihood method is
that there are no ranking functions or linear regression analysis when complete
or censored samples are analyzed. The likelihood equation for a complete sam-

ple is given by
N o m-1 L
L - ]_T (”‘—)(ﬁ) exp -(ﬂ) (A.63)
iel %/\% %

The values of m and og which maximize the likelihood function L, are
determined by taking the partial derivative of the logarithm of the likelihood

function with respect to m and with respect to og. The values of m and

39 are obtained by equating the resulting expressions to zero and solving the
simultaneous equations using the Newton-Raphson iterative technique. The MLE
of m and og are designated by my and ogy and by Mg and ogg for
volume flaw analysis and surface flaw analysis, respectively. For censored
statistics we have
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=0 (A.64)

and

i=] (A.65)

where r is the number of remaining specimens failed by the flaw mode for
which parameters are being calculated. For a complete (uncensored) sample, r
is replaced by N which is the total size of the sample.

The MLE of the shape parameter, m, is always a biased estimate that
depends on the number of specimens in the sample. Unbiasing of the shape
parameter estimate is desired to minimize the deviation between the sample and
the true population. The unbiased estimate of m is obtained by multiplying
the biased estimate with an unbiasing factor (ref. 10). The confidence inter-
vals for complete samples can also be obtained (ref. 10). For censored sam-
ples, a rigorous method for obtaining confidence intervals has not yet been
developed due to the complexity of competing failure modes. Confidence bounds
for censored statistics are instead estimated in the PC-CARES code from the
factors obtained from complete samples (ref. 17). Confidence bounds enable
the user to estimate the uncertainty in the parameters as a function of the
number of specimens. Bounds at 90-percent confidence level and therefore,

5 and 95 percentage points of distribution of the MLE's of the parameters, have
been incorporated into the PC-CARES program, with data taken from reference 10.

Subjective judgement is needed to test the goodness-of-fit of the data to
the assumed distribution. When graphical techniques are used, it can be very
difficult to decide if the hypothesized distribution is valid, especially for
small sample sizes. Therefore, many statistical tests have been developed to
quantify the degree of correlation of the experimental data to the proposed
distribution.

In general, a statistic is a numerical value computed from a random sample
of the total population. The difference between an empirical distribution
function (EDF) and a hypothesized distribution function is called an EDF sta-
tistic. There are two major classes of EDF statistics and they differ in the
manner in which the functional (vertical) difference between the EDF and the
proposed distribution function F(x) is considered. The Kolmogorov-Smirnov
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(K-S) goodness-of-fit statistic D belongs to the supremum class and is very
effective for small samples. It uses the largest vertical difference between
the two distribution functions to determine the goodness-of-fit. For the K-S
test, the sample is arranged in ascending order, and the empirical distribution
function Fn(x) is a step-function obtained from the following expressions:

FN(x> =0 X <X,
i .
FyOO = § Xy €% < L P=1,2,. . N~ (A.66)
FN(x) =1 XN <X
where Xy < Xg <. . . Xy . . . <Xy are the ordered fracture stresses from a

sample of size N. The statistic D 1is obtained by initially evaluating two
other statistics D* and D-, the largest vertical differences when Fn(x) is
greater than F(x) and the Targest vertical differences when FNGXD s smaller
than F(x), respectively. A1l three statistics are calculated by using the
following expressions:

+ i
D ’N - F(X)i‘

o
[}

1 - “ = 1.2, . N (A.67)

‘F(X)1 - N

D = max(D*,0™)

For ceramics design, the F(x)j's are equal to Pe's and are calculated by
using equation (A.59).

On the other hand, the Anderson-Darling statistic, A2, belongs to the
quadratic class and is a more powerful goodness-of-fit statistic. It evalu-
ates the discrepancy between the two distributions through squared differences
and the use of an appropriate weighting function. The statistic A2 is given

by

N |
2 ] .
A== (3) 22 @i - {Qn[z(i)] v onfl - Z(N+1—i)]} (A.68)

i+l

In this case, Z3's are the predicted failure probabilities obtained from equa-
tion (A.59). Corresponding significance levels « are calculated from the D
and A2 statistics. From previous surveys (ref. 17) there is no specific men-
tion of an absolute accepted significance level. Therefore, the user has to be
subjective, using his own judgement in either accepting or rejecting the
hypothesis that the data fit a Weibull distribution. However, a higher value
of a indicates that the data fit the proposed distribution to a greater
extent.

For complete samples, the 90-percent Kanofsky-Srinivasan confidence band
values about the proposed distribution are also calculated to ascertain the fit

89



of the data. These values are similar to the K-S statistic D centered around
the EDF. The bands are generated by

Confidence bands = [F(x) - K(N), F(x) + K(N)] (A.69)

where F(x) is the failure probability obtained by substituting the Weibull
parameters in equation (A.59). The Kanofsky functions, denoted by K(N), are
described in reference 34.

Some limitations are intrinsic to a purely statistical approach to design.
One problem occurs when the design stress is well below the range of experimen-
tal data as shown in figure A.3. Extrapolation of the Weibull distribution
into this regime may yield erroneous results if other phenomena are present.
When two flaw populations exist concurrently, but only one (population A) fis
active in the strength regime tested, the predicted failure probability may be
incorrect. Furthermore, if the threshold strength is not zero, the strength
may be underestimated. Finally, an approach based only on statistics can allow
for stress state effects only in an empirical fashion.

A.4 Material Strength Characterization

Ceramic strength is an ambiguous entity since, for brittle materials, ten-
sile strength, compressive strength, shear strength, flexural strength, and
theoretical strength all have unique meanings and different values. The theo-
retical strength is defined as the tensile stress required to break atomic
bonds, which typically ranges from one-tenth to one-fifth of the elastic modu-
lus for ceramic materials. Because of processing flaws, this strength is never
obtained. A much more meaningful strength measurement is the tensile strength
in uniaxial tension or through flexural testing. In flexural strength testing
the bend strength of of a ceramic is defined as the maximum tensile stress in
the extreme fiber of a beam specimen (modulus of rupture, MOR). The main
objective of the PC-CARES program is to characterize ceramic strength in terms
of the MOR or pure uniaxial strength and to use this data with appropriate
analysis to predict component response under complex multiaxial stress states.
The PC-CARES program calculates required polyaxial statistical material
strength parameters from uniaxial tensile specimen or four-point bend specimen
fracture data. After evaluating the initial parameters as described in sec-
tion A.3 Estimation of Statistical Material Strength Parameters, additional
calculations are performed to determine the material scale parameter and
Batdorf crack density coefficient for use in the reliability calculations.

For volume flaw analysis using four-point MOR bar data with known geometry
(fig. A.4), the value of Cy 1in equation (A.59) are obtained from the least-
squares or maximum 1ikelihood analysis. The tensile stress distribution in a
four-point bend specimen is
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o, = __fi{ff___ 0 < x« L] _ LZ
x T T, - Lh LXL73
2yo L, - L L, + L
i 1~ 52 1t
o, = = —5 S (x ¢ —5—* f‘ (A.70)
4L, - X)yo L, + L
) £ 1t b
° = L, Z Lph 7 Sxslh _J

By equating the risk of ruptures of equations (A.9) and (A.59), we obtain

m
o V m
(—1—) aV = Cyop (A.71)
%oV
Vv
and, after integrating over the tensile portion of the bar, the scale param-
eter is
1/m
Ly +mbLo] Vo vy
wh 1 V-2 e
% =3 T 3 =\ (A.72)
Cv(mV + 1) Vv

where Vo is the effective volume. For uniaxial tensile loading, the effec-
tive volume is equal to the gage volume Vg, which is the uniformly stressed
region where fracture is expected to occur. Note when Lyp is zero the solution
for the three-point MOR bar is obtained.

For the Batdorf model, using the shear-insensitive case from
table A.II(b), we have

UL,o. ) o
— a1 =Y (A.73)
m OX

From equations (A.16b) and (A.17), after performing the docr 1integration, the
risk of rupture for the four-point-bend specimen is

o}

e
max
AUL,o ) m,,~-1 k m
*Uer v BV Vv
— (kaBVOCY‘ )docr dv = vaﬁJ‘ o dv (A.74)
v

v
Equating risk of ruptures from equations (A.74) and (A.59) gives
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m k m
v BV Vv
Cvcf = va P J oy dv (A.75)
)

from which, after integrating the stress over the tensile loaded volume with
oy defined in equation (A.70), we get

2, (my + 12 Cy
oy = @y + DR Ty T 2my + D 7. (A.76)

Using equation (A.72) and the previously defined Weibull crack density coeffi-
cient, we have

e
Cy = my KaVe (A.77)
<°ov)

Substituting equation (A.77) into equation (A.76) and rearranging gives the
normalized Batdorf crack density coefficient for the shear-insensitive case,

k
= Bv
Koy = 7— = 2m, + 1 (A.78)
BV ka v

For the Batdorf shear-sensitive case, assuming a Griffith crack and
coplanar strain energy release rate criterion, we obtain Q(L,ocp)/4r  from
table A.II(b). For uniaxial loading o, after performing the indicated inte-

gration we get

o3

Q(T,0. ) dN, (o) k m

eor’ V%’ 4o gy B | o Vv (A.79)
4e do cr m, + 1

0 cr Vv Y

v
Again equating the risk of ruptures from equations (A.59) and (A.79) in terms
of the effective volume gives

m m
v BV Vv
CVo == 70 Ve (A.80)
Using equation (A.77), we substitute for Cy to get

k
BV
ka = my + ] (A.81)

from which the normalized crack density coefficient for the selected shear-
sensitive case is
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Rgy =t = my + | (A.82)

In the PC-CARES program, kgy is computed numerically for a shear-
sensitive material for the general case where no closed-form solution exists.
By using equations (A.16b) and (A.17) and equating the appropriate risk of
ruptures we obtain

e
m Ko ,Mm max m,,-1
v BV'V v
Cvcf = Ay J Q(Z,ocr)ocr d°cr dv (A.83)
0
v
or rearranging
m
4nC,, o
K v f (A.84)
BV o
€ max mV"]
m fo 02,0, )o.r  do_|dv
v

For surface flaw analysis, using data from four-point MOR bars with known
geometry (fig. A.4), the value of Cg and mg in equation (A.59) is obtained
from the Teast-squares or maximum 1ikelihood analysis. Equating the risk of
ruptures of equations (A.45) and (A.59) gives

m
oy S mS
—_— dA = Csof (A.85)
%05

A

By using the tensile surface stress on the beam sides as given by equa-
tion (A.70), and in addition at y = h/2, where

. - (LZxOfL | 0 cx ¢ L, ; L, B
17 =2
Ly - L L, + L
1 2 1 2
o, = o —5 S ix < —5=F r- (A.86)
2(Ly - x) L+ L,
o, = 77— 0 — < x <L
x T - °f 2 ] J

then substituting for o4 and performing the integration in equation (A.85),
the scale parameter is obtained as
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i/m

L2 S
-L—]-ms + 1 "‘SW
95 = sWa+h * T Kw + h)L] (A.873)
Colma + 1)
S*S
or
Ae 1/mS
95 = E; (A.87b)

where A, 1s the effective area. For uniaxial tensile loading, the effective
area is equal to the specimen gage area Agq, which is the total specimen sur-
face area of interest. Note when Ly is zéro the solution for the three-point
MOR bar is obtained.

For surface flaw reliability analysis with the Weibull normal stress aver-
aging method, we calculate the polyaxial crack density coefficient kwps from
the following equation (refs. 17 and 28):

me N T(mkK
S_ WS (A.88)

s
"S- x(ng + 3)

where kys has been previously defined in equation (A.45).

By combining equations (A.49) and (A.50) for the Batdorf surface flaw
model, we can express Pgg as

do. _|dA (A.89)

For uniaxial tension with a shear-insensitive fracture criterion, substituting
for w(L,ocp)/2r from table A.III (op = 0), we obtain

%
2m.k ms-l

o
=1 - expd- —38 cosh/=C 0 3 do._|dA (A.90)

P w 1 cr cr

fS

Q

A 0

Equating the risk of rupture in equation (A.90) with that of equation (A.45)
results in
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N Kgs mS«/§ I(m¢)

Kpe = 07— = ———— 2 (A.91)
BS "k 1
wS r(ms + 2)
Hence, for this special case the Batdorf crack density coefficient is identical

to the Welbull polyaxial crack density coefficient: that is

k (A.92)

BS = Kips

Stmilar results were obtained for volume flaw based analysis as well.
For the general shear-sensitive case, kgg s computed numerically since

no closed-form solution exists. Thus, equating the risk of ruptures of

equations (A.59) and (A.89) gives

g

e
mS max w(Z,ocr) ms—l
CSof = mSkBS 5w ocr dccr dA (A.93)
A 0
from which we obtain
m
ZWCSOfS
k = (A.94)
BS o
m fmax oy oS do__|dA
S WAL, 0700 %er
A o
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FIGURE A.1. - STRESSES ON CAUCHY INFINITESIMAL
TETRAHEDRON IN PRINCIPAL STRESS SPACE (3), PRO-
JECTED ONTO A TANGENT PLANE TO THE UNIT RADIUS
SPHERE AS SHOWN IN (D).
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FIGURE A.2. - NORMAL AND SHEAR STRESS AS A FUNCTION OF
0 PROJECTED ONTO A TANGENT LINE TO THE UNIT RADIUS
CIRCLE.
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TABLE A.I. - FORMS OF Pay

FOR VARIOUS FRACTURE CRITERIA AND SELECTED CRACK CONFIGURATIONS

{oy) 2 02 > 03, 03 2 0 and o4 = o¢p-]

Q(E,0 ) w/2

After obtaining roots for a given stress state E, o,

p L o—t 2 dB sin « da
2V 4w w
0
- a2 - 43 a 3
® = cosZB = : 2 13 or & = - = when a =0
2,1 1,2 2a a 1
1 2
where ¢‘ < @2
B ) = cos” ofo
,la,ocr = Ccos ﬁ

-1
E(u,ocr) = cos \/;

ﬁz(a,acr) = cos_] ‘/‘;;

and varying «, care must be taken in

evaluating I dB. The relation of o, to o, in the neighborhood of § must be known to

obtain the proper limits of the integral.

»(1 - 0.25v)
Dl : _—__J—-—_E ! DZ = 2 01 -
{1 - 0.5v) (1 - 0.5v)
Fracture Crack Quadratic equation coefficients
criterion configuration for On(E,a,B) >0
Normal Independent a =0
1
stress of crack
(shear- shape a = ( )sin2
insensitive 27 '% 7% @
cracks) 2
a3 = (o] - 03)cos @ + 03 - ocr
Maximum Griffith _ s 2 sin4
tensile crack 4H 7% 3) “
stress (GC)
a, = ( )sinza 2 cos2 + sin2 ) 4o a o
27 %% Q’l R er " %37 %
= o 2 sinzu cosza 40 ( cosza +0 sinza + 402
3 7 (%1 3) cr\1 3 ) cr
Penny-shaped _ 2 .4
crack 4 Dr(éz - 03) sin«
(P30 =D_( )sin2 2( 0 2 + s1'n2 4 o
02 = ] 02 03 «x 01 C0S « 03 x D] oCl" 03 2
= -D o 2 sinza cosza 40 (o cosza + sinza + 402
%3 7 1(%1 3) cri\ 1} % ) cr
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TABLE A.I. - Concluded.

Fracture Crack Quadratic equation coefficients
criterion configuration for o, (C,a,B) 2 0
Strain Griffith =0
energy crack
release (GC) _ (2 Z)sinz
rate, =T T % *
b1 2 2 .2
= -0, C0OSx-0_Ssina+ o0
1 3 cr
Penny-shaped _ 2 .4
crack - D2(5’2 - °3> sin
P
(30 = -D 2 z)s'n2 + 2D_( )si 2 'n2 + c052
= ](02 03 1 x 2 02 03 sin a(03 s x O_I (X)
=D (%2 cos2 + 2 i 2 ) D 2 + s'n2 2 + 02
= 1 1 [ 4 0'3 S1n a) + 2 G] CO0S « 0'3 1 (X) cr
Shetty Griffith _ L 2 4
crack " 22 ("z N °3) S«
(GC)

= ( a )sin2 + L (é 2 + 2 i 2 -G
= 02 3 @ Ocr EZ o, €0sS a 03 sin « 9, 3)

2 2 , 2 1 2 .2 2
=06 -0 (o cos a+ o sina)- a -0 sin a cos «
cr cr( 1 3 ) EZ ( 1 3)

Penny-shaped
crack
(PSC)

Yy 2 . 4
= EZ (02 0’3) S1N «

+E]'(2 2+2 sinza-o-a
EZ 0] C0S « 03 2 3>

= (o )Sin2
T l% T % %

D

= o s 2 2 + si 2 ) - 4)2 sinzu cosza
= aCl" OCF(] 0s « 03 mn a Ez (O_I 03
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TABLE A.II(a). - FORMS OF Py FOR VARIOUS FRACTURE CRITERIA,
CRACK CONFIGURATIONS, AND STRESS STATES

(o} > 63 = 63, 03 2 0 and o4 = Oer-]

Q(L,o
-

p

2V 4w

)
= J sin a da

-1l

4
2

-3, .t
2
-1
) cos .‘/—_
r
cos

Vaz 4a a

2 13
2
[

or &= -~ ;3 when a, = 0

- 1
aZ(ocr)_ ‘/;;
°1=——L—_2’ D, = ] ; =0 !
(1 = 0.5v) (1 - 0.5v)
Fracture Crack Quadratic equation coefficients
criterion configuration for on(C,a) 20
Maximum Griffith a = (o o 2
tensile crack - ( 1 é)
stress {GC)
a=—c—02—4(o -0 .)o
2 ] 2 1 2" ¢r
a3 = 40cr(acr - 02)
Penny-shaped _ 2
crack 4 = Dl(?] - 02)
(PSC) ol 2 ) 4 © )
3 F 1(1 °2) o, 1 %2'%r
a3 : 40cr(ccr - 02)
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TABLE A.II(a).

- Concluded.

Fracture Crack Quadratic equation coefficients
criterion configuration for o, (C,a) > 0
Strain Griffith a, = 0
energy crack
release (GC) a = 2 2
rate, 2% 7%
GT a = 02 02
37 Tcer 2
Penny-shaped ~ >2
crack 4 = DZ(%l %
(PSC) s <.2 2) s 20 |
I AN 2°2°% T %
a = 2 2
37 % 7%
Shetty Griffith 1 2
a = g - 0O
crack 1 62 1 é)
(GC)
a, = - | ) L 2
2 % 7% T 2 (O °z)
C
43 = acr(ocr - 02)
Penny-shaped D
crack a, = -1 (? o )2
1721 2
(PSC) o
a, = - (o ) D_]' 2
27 %% 7% T 2 O °z)
C
43 = 0cr(ccr - 02)
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TABLE A.II(b). - FORMS OF Pyy FOR VARIOUS FRACTURE CRITERIA, CRACK

CONFIGURATIONS, AND STRESS STATES

[o3 2 0.1
QL,c )
PZV: 4
Fracture Crack Stress state P2V
criterion configuration
Normal Independent o, =g e
stress of crack 23 G T T OS] - ‘/;
- h
fshear. ' shape o £ 02 where
insensitive
k -
cracks) 5 o o
db:cosa:o — o
1 2
Uniaxial Q
o =0 P 1-cosa=1- \/;
02 = 03 =0 where
[+]
2-
tl):coso;:'_f':‘E
a
Note: CARES defaults to
shear-insensitive crack
for uniaxial loading
when IKBAT = 0.
Equibiaxial 5
9, =0,=0 a _ ) -<r
o =0 4w [}
3 °
Strain Griffith Uniaxial o
_ Q <r
energy crack o, =0 =1 -
1 4% fed
release (GC) 6 o =0
rate, 273 °
G
Equibiaxial
al = 02 B Q -
0 4w
. =
3
Independent Independent Equitriaxial a 1.0
of fracture of crack o =0,=0 =0 45 =
criterion shape
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TABLE A.III. - FORMS OF Ppg FOR VARIOUS FRACTURE CRITERIA AND SELECTED
CRACK CONFIGURATIONS

[oy > op, 03 2 0, o3 =0 and Jg = Ggp.]

«(E,0 )
p ___cr__ZJd
= = o
28 2w w

]
[T
i~
i+
-]
N N
1
F-N
u
w
K
u

2,1 2a

where @ ¢ &

_Ri
Q
o
3
1
o
o
w
t
- I
~N

(0 ) =cos | ofo
a2 0cr s ‘/_;

After obtaining roots for a given stress state & and Ocp» Care must
be taken in evaluating J da. The relation of g to o in the

neighborhood of o« must be known to obtain the proper limits of the

integral.
D - 1
371 -
Fracture Crack Quadratic equation coefficients
criterion configuration for op(Z,a) > 0
Normal Independent a =0
1
stress of crack
fsheart ‘ shape az =0, - 9%,
insensitive
ks)2 = -
cracks) a3 02 ocr
Strain Griffith a] =0
energy crack
release (GC) a = 2 2 .
rate, 2% "°
a
N a, = 2 02
37 %r 2
Griffith 2 D
notch a] = (c] - a.) 9~ 1
(GN) (1.1215)
D
a_ = -20 (o, - a0 ) - (? -0 )2
- 1 2 2
2 2 2 (1.1215)
_ 2
33 % " %

dfor cases where neither ¢y nor &, is between 0 and 1, see ref. 2.
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TABLE A.III. - Concluded.

Fracture Crack Quadratic equation coefficients
criterion configuration for oq(E,a) 2 0
Shetty Griffith a = 1 2
crack 17 EZ % oé)
(GC)
- L 2
3, =90 %)~ ("1 B °z)
C
a3 = 0cr(ocr - 02)
Griffith i 2
notch 4z _2\" T °2)
(GN) (1.12150)
a, = -0 (o a,) —1 (% o )2
2 cr 1 2 (I.IZISE)Z 1 2
a3 : 0cr(ocr - 02)
Semicircular ( >2 ( )2
crack a, = o, -0
1 = 1 2
C
2
0.9085 2
a, =-o_ (o, -0) - g, -0
2 r 2 = 2
C
a3 = ocr(ocr - 02)
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